期刊文献+

一类具有分布时滞Liénard方程反周期解的存在性和唯一性

Existence and Uniqueness of Anti-periodic Solutions to a Class of Liénard Equations with Continuously Distributed Delays
下载PDF
导出
摘要 利用Leray-Schauder度理论,研究了一类具有分布时滞的Liénard方程反周期解的存在性和唯一性. In this paper, we use the Leray-Schauder degree theory to study the existence and uniqueness of anti-periodic solution to a class of Lirnard equations with continuously distributed delays.
出处 《重庆工商大学学报(自然科学版)》 2012年第8期1-7,共7页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 安徽高校自然科学基金重点项目(KJ2009A49) 安徽大学研究生科研创新基金项目(YFC09011)
关键词 分布时滞 LIÉNARD方程 LERAY-SCHAUDER度理论 反周期解 存在唯一性 continuously distributed delays Lienard equation Leray-Schauder degree theory anti-periodic solution existence and uniqueness
  • 相关文献

参考文献14

  • 1LU S ,GE W. Periodic solutions for a kind of Lirnard equations with deviating arguments[J]. J Math Anal App1,2004,249 : 231-243.
  • 2I MENG Y, LIU B, HUANG L H. Positive almost periodic solutions for a class of Li6nard-type systems with multiple deviating arguments [ J ]. Journal of Computational and Applied Mathematics,2008,220 : 615-623.
  • 3GAO H, LIU B. Existence and uniqueness of periodic solutions for forced Rayleigh-type equations [ J ]. Applied Mathematics and Computation,2009,211 : 148-154.
  • 4ZHOU Y, TANG X. On existence of periodic solutions of Rayleigh equation of retarded type [ J ]. Journal of Computational and AppliedMathematics, 2007,203 : 1-5.
  • 5LU S,GUI Z. On the existence of periodic solutions to Rayleigh differential equation of neutral type in the critical case [ J ]. Nonlinear Analysis : Theory,Methods & Applications,2007,67 : 1042-1054.
  • 6ZHOU Q, LONG F. Existence and uniqueness of periodic solutions for a kind of Li6nard equation with two deviating arguments [J]. J Comput Appl Math,2007,206(2) : 1127-1136.
  • 7LV X, YAN P, L1U D. Anti-periodic solutions for a class of nonlinear second-order Rayleigh equations with delays [ J ]. Commun Nonlinear Sci Numer Simulat,2010,15:3593-3598.
  • 8LIU B. Anti-periodic solutions for forced Rayleigh equations [ J ]. Nonlinear Anal,2009 (10) :2850-2856.
  • 9YU Y,SHAO J, YUE G. Existence and uniqueness of anti-periodic solutions for a kind of Rayleigh equation with two deviating arguments [ J ]. Nonlinear Anal,2009,71 : 4689-4695.
  • 10LI Y,HUANG L. Anti-periodic solutions for a class of Li6nard-type systems with continuously distributed delays[J]. Nonlinear Anal,2009(10) : 2127-2132.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部