摘要
Electromigration in porous media is enhanced by a new type of electrokinetic processing. Compared with a single -oriented electric field, a continuously reoriented electric field was proven to sharply enhance mass transport of several heavy metals in kaolin. The initial concentration of the metals was: Cd: 250 mg/kg; Cu: 250 mg/kg; Ni: 250 mg/kg; Zn: 900 mg/kg. Electric field reorientation was obtained by the use of a fixed anode and a cathode that rotated at different frequencies (0, 0.25, 1.00, 1.25, 2.00, 5.00 and 10.00 r/m). Mass transport evidently increased from 0 r/m to 1.25 r/m, and then decreased as the rotation speed reached 10 r/m. From 0 r/m to 1.25 r/m, mass transport increased 2.87 times for Cd, 3.17 times for Cu, 2.11 times for Ni, and 4.13 times for Zn. We suggest that continuous reorientation of the electric field facilitates the advance of ions through kaolin pores, minimizing the retardation effect caused by media tortuosity.
Electromigration in porous media is enhanced by a new type of electrokinetic processing. Compared with a single -oriented electric field, a continuously reoriented electric field was proven to sharply enhance mass transport of several heavy metals in kaolin. The initial concentration of the metals was: Cd: 250 mg/kg; Cu: 250 mg/kg; Ni: 250 mg/kg; Zn: 900 mg/kg. Electric field reorientation was obtained by the use of a fixed anode and a cathode that rotated at different frequencies (0, 0.25, 1.00, 1.25, 2.00, 5.00 and 10.00 r/m). Mass transport evidently increased from 0 r/m to 1.25 r/m, and then decreased as the rotation speed reached 10 r/m. From 0 r/m to 1.25 r/m, mass transport increased 2.87 times for Cd, 3.17 times for Cu, 2.11 times for Ni, and 4.13 times for Zn. We suggest that continuous reorientation of the electric field facilitates the advance of ions through kaolin pores, minimizing the retardation effect caused by media tortuosity.
基金
Project supported by the Ministry of Education of China(No. 708060)
the Cultivation Fund of the Key Scientific and Technical Innovation Project
the Program for New Century Excellent Talents in University, Ministry of Education (No. NCET-08-0508),China