期刊文献+

含有周期性的时间序列中连续型缺失数据的填补方法 被引量:3

Imputation Methods for Continuously Missing Values in Time Series with Significant Periodicity
下载PDF
导出
摘要 目的用模拟研究的方法,对含周期性的时间序列数据中的连续型缺失数据进行填补,比较基于周期信息的时间序列缺失值填补法(简称周期性填补法)和spline插值填补法对连续型缺失数据的填补效果。方法分别应用模拟时间序列数据和实际时间序列数据模拟连续型缺失,比较两种方法在不同连续缺失个数下的缺失值填补效果。采用NRMSE和RMSE量化填补的误差。结果除连续型缺失长度为10和平,随着连续缺失个数的增加,周期性填补法的填补误均小于spline插值填补法。周期性填补方法的填补误差在5~30的连续缺失范围内无明显波动,始终保持在一个较低的水平;而spline填补值的误差随着缺失个数的增加明显增高。结论对于含有确切周期性的时间序列,周期性填补方法对连续型缺失数据的填补效果相对于spline填补更好,填补误差稳定,并且不随连续缺失长度的增加而有较大的变化。 Objective To compare the imputed effects for con- tinuously missing values between imputation method based on periodicity and the spline curve method using simulating time-series data with significant periodicity. Methods To apply simulated time-series and actual time-se- ries to simulate continuously missing values, then the imputation effects of two methods were compared by NRMSE and RMSE. Results Except for 10 and 20 missing length, the error of imputation method based on periodic- ity was smaller than that of spline method, and the imputation error always stayed a lower level with increasing length of continuously missing values, while the imputation error of spline method increased with the length of continuously missing values. Conclusion The imputation method based on periodicity is good at continuously missing pattern and provides accuracy and stable imputed values in time-series with significant periodicity.
出处 《中国卫生统计》 CSCD 北大核心 2012年第3期318-320,324,共4页 Chinese Journal of Health Statistics
基金 2008年国家自然科学基金资助(30872182)
关键词 时间序列 连续型缺失数据 周期性填补 spline填补法 Time series Continuously missing value Imputation method based periodicity spline method
  • 相关文献

参考文献7

  • 1武艳强,黄立人.时间序列处理的新插值方法[J].大地测量与地球动力学,2004,24(4):43-47. 被引量:41
  • 2顾岚主译.时间序列预测与控制.北京:中国统计出版社,1997.
  • 3贾晓峰.西北太平洋海表温度场时间序列分析,首都师范大学硕士毕业论文,2005.
  • 4Heikki Junninena, Hard Niskaa, Karl Tuppuralnenc, et al. Methods for imputation of missing values in air quality data sets. Atmospheric Envi- ronment, 2004 ( 38 ) : 2895-290.
  • 5Bello AL. Imputation techniques in regression analysis:Looking closely at their implementation . Computational Statistics and Data Analysis, 1995,20.45-57.
  • 6Lavori PW, Dawson R, Shera DA. Multiple imputation strategy for clini- cal trials with truncation of patient data. Stat Med, 1995,14:1913-1925.
  • 7Schafer JL. Analysis of incomplete multivariate data. Chapman and Hall, 1997 : 286 -293.

共引文献40

同被引文献29

  • 1刘鹏,雷蕾,张雪凤.缺失数据处理方法的比较研究[J].计算机科学,2004,31(10):155-156. 被引量:24
  • 2周惠彬,任栋.经济统计调查中缺失数据的修复[J].统计与决策,2004,20(10):12-14. 被引量:5
  • 3张其文,李明.一种缺失数据的填补方法[J].兰州理工大学学报,2006,32(2):102-104. 被引量:7
  • 4方佳明,邵培基,粟婕,张谦,田禹.基于网络的问卷调查回复率影响因素实证研究[J].管理评论,2006,18(10):12-17. 被引量:14
  • 5Albrecht G H. Multivariate morphometrics with missing data: tech- niques for canonical variate and generalized distances. Am J phys. AnthroDol, 1992, 14(S14).. 42-48.
  • 6BrockweUPJ,DavisRA.时间序列的理论与方法.北京:高等教育出版社,2001.
  • 7LittleRJA,RubinDR缺失数据统计与分析.孙山译.北京:中国统计出版社,2004.
  • 8Bello AL. Imputation techniques in regression analysis: Looking closely at their implementation. Computational Statistics and Data Analysis, 1995, 20: 45-57.
  • 9Lavori PW, Dawson R, Shera DA. Multiple imputation strategy for clinical trials with truncation o{ patient data. Stat Med, 1995, 14: 1913-1925.
  • 10Schafer JL. Analysis of incomplete multivariate data. Chapman and Hall. 1997: 286-293.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部