期刊文献+

基于支持向量机的综合地质环境评价研究 被引量:5

The Research of Integrated Geological Environment Eevaluation Based on Support Vector Machine
原文传递
导出
摘要 榆神府矿区位于毛乌素沙地与陕北黄土高原丘陵沟壑区的过渡地带,该矿区煤层埋藏浅、开采厚度大、上覆基岩厚度较薄且有松散潜水含水层分布。区内常年干旱少雨、植被稀疏,是典型的生态脆弱区,大规模煤层开采容易导致较严重的地质环境问题。分析了影响研究区生态环境的地质采矿因素,研究煤层开采对各地质环境因素的影响;采用支持向量机(SVM)理论和方法,建立了综合地质环境质量评价及预测非线性模型,对研究区煤炭资源开采地质环境多因素非线性相互作用演变结果进行了评价和预测,得到了5个等级综合地质环境现状分区、开采变化的预测结果。该方法在评价复杂地质环境多因素非线性相互作用及预测综合地质环境演变方面具有更科学、精细、接近现实的效果。 The Yushenfu mining district, located in transition region between the hill ravine area of Loess Plateau in the north of Shaanxi province and Maowusu sand land, has many characteristics: the embedding depth of coal seam is shallow, the mining seam is thick and the thickness of overlying base rock is rather thin, in addition, the surface in this zone was covered by rather unconsolidated formation. Because of the drought and lack of rain all of the year and the sparse vegetation, it is a typically eco- logical vulnerability. Consequently, the large-scale coal mining easily result in some more serious prob- lems of the geological environment. The research analyzes the geological mining factors and study the influence on geological environment exerted by coal mining. Adopting the theory and methods of the support vector machine (SVM), we built an assessment of integrated geological environmental quality and a nonlinear prediction model. By evaluating and forecasting the evolution result of nonlinear inter- action of geological environment factors on coal mining, we got predicting results from five different comprehensive geological environment divisions and the mining change divisions. The method has a more scientific and more accurate effect, closer to the reality in evaluating the nonlinear interaction that comes from the factors of complex geological environment and predicting the evolution of comprehen- sive geological environment.
作者 都平平
出处 《采矿与安全工程学报》 EI 北大核心 2012年第4期555-558,共4页 Journal of Mining & Safety Engineering
基金 国家自然科学基金项目(40572160 41172290)
关键词 地质环境 支持向量机(SVM) 环境预测 geological environment support vector machine (SVM) environmental forecast
  • 相关文献

参考文献10

二级参考文献77

共引文献654

同被引文献49

  • 1姚舜才,朱红青,屈丽娜,高如乐.基于非线性模型的矿用救生舱温度控制[J].煤炭学报,2012,37(S1):92-97. 被引量:1
  • 2陈桥,胡克,雒昆利,李福来,赵伟.基于AHP法的矿山生态环境综合评价模式研究[J].中国矿业大学学报,2006,35(3):377-383. 被引量:74
  • 3朱伟兴,李丽,庞敏.基于神经网络的数据融合在废气测量中的应用[J].中国安全科学学报,2007,17(6):162-165. 被引量:2
  • 4张学工译,Vladimir N.Vapnik著.统计学习理论的本质(第2版)[M].北京:清华大学出版社,2008:48-54.
  • 5Yiakopoulos, C.T. , Gryllias, K.C. , Antoniadis, I.A. , Rolling element bearing fault detection in industrial envi- ronments based on a K-means clustering approach [ J ]. Expert Syst. Appl, 2011, 38(4) : 2888-2911.
  • 6Platt J C, Cristianini N, Shawe -Taylor J. Large margin DAGs for multiclass classification [ J ]. Advances in Neural Information Processing Systems, 2000, (12) 12 : 547-553.
  • 7Trelea, I. C. The particle swarm optimization algo- rithm: convergence analysis and parameter selection [ J ]. Information Processing Letters, 2003, 85 (6) : 317 -325.
  • 8Dhame, A. G. , Jayasuriya, S. Robust adaptive control of residual vibrationin point-to-point motion of flexible bodies[J]. Journal of Vibration and Control, 2007,13 (7) :951-968.
  • 9Owens, D. H., Hatonen, J. J., Daley, S. Robust monotone gradient-based discrete-time iterative learning control. International [ J ]. Journal of Robust and Non- linear Control, 2009, 19(5) : 634-661.
  • 10Heber A J,Ni J Q,Lim T T,et al.Quality assured measurements of animal building emissions:Gas concentrations[J].Journal of the Air and Waste Management Association,2006,56(10):1472-1483.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部