期刊文献+

基于SVM的橡胶连续收盘指数的降噪回归预测

On Consecutive Closing Price of Rubber Based on SVM’s Regression Forecast with Noise-reduction
下载PDF
导出
摘要 基于支持向量机的预测模型对橡胶连续的收盘价原始数据和降噪后数据进行预测,并对拟合得到的2个结果进行对比.结果表明:对时间序列降噪后,再用支持向量机进行预测模拟,相比直接用原始数据得到预测结果要精确得多,也具有很好的推广价值. Based on support vector machine, the raw data and data with noise reduction are separately used to predict rubber consecutive closing price, and comparison of these two results is conducted and conclusion is obtained. The study suggests that the forecast using the data of time series with noise reduction is more accurate than the one directly with the raw data.
机构地区 宁波大学理学院
出处 《宁波大学学报(理工版)》 CAS 2012年第3期75-78,共4页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(10774080)
关键词 支持向量机 降噪 回归预测 橡胶连续 support vector machine noise reduction regression prediction rubber continuous
  • 相关文献

参考文献8

二级参考文献49

  • 1黄宴委,吴惕华,赵静一.回归型支持向量机的系统辨识及仿真[J].计算机仿真,2004,21(5):41-44. 被引量:8
  • 2[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 3[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 4[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.
  • 5[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287.
  • 6[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 7[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 8[7]Vapnik V N. The Nature of Statistical Learning Theory [M]. 2nd edition. New York: SpringerVerlag, 1999.
  • 9[8]Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Advances in Kernel Methods - Support Vector Learning [C].Cambridge: MIT Press, 1999. 185-208.
  • 10[9]Suykens J A K, Vandewalle J. Least squares support vector machines [J]. Neural Processing Letters, 1999, 9(3): 293-300.

共引文献332

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部