期刊文献+

自适应滤波器消除语音信号中混合噪声 被引量:5

Elimination of Mixed-noise in Speech Singal by Adaptive Filter
下载PDF
导出
摘要 语音信号在实际采集和传输的过程中,往往掺杂着多种噪声干扰,比较常见的是正弦窄带干扰和高斯白噪声,而一个简单的自适应滤波器往往很难同时滤除多种噪声。为了抑制混合噪声而得到真实的语音信号,在最小均方误差(LMS)自适应算法和自适应噪声抵消原理的基础上,提出了一种两级自适应滤波器方案,第Ⅰ级在传统噪声抵消系统中加入延迟单元消除正弦窄带干扰,第Ⅱ级用LMS自适应噪声抵消器消除高斯白噪声,同时,利用Simulink模块库对所设计的两级自适应滤波器进行了建模仿真。仿真结果表明:该方案滤波器可以有效地滤除包含正弦窄带干扰和高斯白噪声的混合噪声,达到提高语音质量的目的。 The acquisition and transmission of speech signal are often mixed with a variety of noise or interference,such as sinusoidal narrow-band interference and Gaussian white noise.A simple adaptive filter is hard to filter out them simultaneously.In order to suppress mixed-noise to get a real voice signal,a two-stage adaptive filter program was proposed based on least mean square(LMS) adaptive algorithm and adaptive noise cancellation principle.By adding delay elements to a traditional adaptive noise cancellation,the first stage could eliminate the sinusoidal narrow-band interference,and the second stage was used to eliminate the Gaussian white noise.The two-stage adaptive filter was simulated by using Simulink block library.The simulation results show that the proposed filter can effectively filter out mixed-noise including sinusoidal narrow-band interference and Gaussian white noise,and improve the quality of speech signal.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2012年第4期42-45,51,共5页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(61076046) 吉林省科技发展计划项目(20100501)
关键词 自适应 最小均方误差算法 SIMULINK 混合噪声 Adaptive Least mean square algorithm Simulink Mixed-noise
  • 相关文献

参考文献10

  • 1Abutalebi H R,Dashtbozorg B. Speech Dereverberation in Noisy Environments Using an Adaptive Minimum Mean Square Error Estimator[ J]. lET Signal Processing,2011,5 ( 2 ) : 130 - 137.
  • 2Mariusz L, Marek P. Adaptive Algorithms for Enhancement of Speech Subject to a High-level Noise [ J ]. Archives of Acoustics ,2010,35 (2) :203 - 212.
  • 3Mohammad A H,Toufiqul I,Hasan M H. Robust Speech Dereverberation Based on Blind Adaptive Estimation of Acoustic Channels [ J ]. IEEE Transactions on Audio, Speech and Language Processing,2011,19 ( 4 ) :775 - 787.
  • 4Jungpyo H, Seungho H, Sangbae J, et al. Adaptive Microphone Array Processing for High-Performance Speech Recognization in Car Environment[ J]. IEEE Transactions on Consumer Electronics,2011,57 ( 1 ) :260 - 266.
  • 5Zheng Y,Christopher N,Louis N C,et al. Background Noise Cancellation of Manatee Vocalizations Using an Adaptive Line Enhancer[ J ]. Journal of the Acoustical Society of America ,2006,120 (1) :145 -152.
  • 6Sayed A H, Lotfizad M. A Family of Adaptive Filter Algorithms in Noise Cancellation for Speech Enhancement [ J ]. International Journal of Computer and Electrical Engineering,2010,2(2) :307 -315.
  • 7贺宽,黄涛.基于Matlab的自适应滤波器设计[J].武汉理工大学学报(信息与管理工程版),2008,30(1):70-73. 被引量:19
  • 8Emilio S O,Javier C M ,Juan F G,et al. An Easy Demonstration of the Optimum Value of the Adaptation Constant in the LMS Algorithm[J]. IEEE Transactions on Education,1998,41 (1) :81.
  • 9Mojtaba L, Hadi S Y. Modified Clipped LMS Algorithm [ J ]. Eurasip Journal on Applied Signal Processing,2005 (8) :1229 - 1234.
  • 10McLernon D C, Lara M M, Orozco-Lugo A G. On the Convergence of the LMS Algorithm with a Rank-deficient Input Autocorrelation Matrix [ J ]. Signal Processing,2009,89 ( 11 ) : 2244 - 2250.

二级参考文献9

共引文献18

同被引文献46

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部