期刊文献+

复参数HSS迭代法求解非Hermitian正定线性方程组 被引量:3

Complex Parameter HSS Iteration Method for Non-Hermition Linear Equations
下载PDF
导出
摘要 将实参数的Hermitian/斜-Hermitian分裂(HSS)迭代法推广到复参数Hermitian/斜-Hermitian分裂(CHSS)迭代法,并证实CHSS迭代法是无条件收敛的。理论分析显示:CHSS迭代法的致缩因子的上界依赖系数矩阵Hermitian部分的谱,与矩阵的特征向量无关。数值例子显示方法的有效性。 In this paper,a real parameter for the Hermitian and skew-Hermitian splitting(HSS) iteration method was extended to a complex parameter for the Hermitian and skew-Hermitian splitting(CHSS) iteration method.It is shown that the CHSS iteration method converges unconditionally to the unique solution of the system of linear equations.Theoretical analysis shows that an upper bound of the contraction factor of the CHSS iteration method depends on the spectrum of the Hermitian part,and is independent of the eigenvectors of the matrices involved.Numerical examples are given to illustrate the efficiency of the presented methods.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2012年第4期86-90,9-10,共5页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(11026040) 河南省科技发展计划基金项目(122300410316) 河南省自然科学研究基金项目(12A110001)
关键词 非Hermitian矩阵 HERMITIAN矩阵 斜-Hermitian矩阵 分裂 迭代法 Non-Hermitian matrix Hermitian matrix Skew-Hermitian matrix Splitting Iteration method
  • 相关文献

参考文献19

  • 1Berman A,Plemmons R J. Nonnegative Matrices in the Mathematical Sciences [ M ]. New York : Academic Press, 1979.
  • 2Varga R S. Matrix Iterative Analysis [ M ]. Englewood Cliffs : Prentice-Hall, 1962.
  • 3Saad Y. Iterative Methods for Sparse Linear Systems [ M ]. Boston:PWS Publishing Company, 1996.
  • 4Bai Z Z, Golub G H,Ng M K. Hermitian and Skew-Hermitian Splitting Methods for non-Hermitian Positive Definite Linear Systems [ J ]. SIAM J Matrix Anal Appl,2003 ( 24 ) :603 - 626.
  • 5Bai Z Z, Golub G H, Ng M K. On Successive-overrelaxation Acceleration of the Hermitian and Skew-Hermitian Splitting Iteration [ J ]. Numer Linear Algebra Appl, 2007 ( 14 ) : 319 - 335.
  • 6Bai Z Z,Golub G H, Lu L Z, et al. Block Triangular and Skew-I-Ierimitian Splitting Methods for Positive-definite Linear Systems [ J ]. SIAM J Sci Comput,2005 ( 26 ) : 844 - 863.
  • 7Bai Z Z. Modified HSS Iteraton Methods for a Class of Complex Symmetric Linear Systems [ J ]. Computing,2010 (87):93 -111.
  • 8Li L,Huang T Z,Liu X P. Modified Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive-definiteLinear Systems [ J ]. Numer Linear Algebra Appl,2007 (14) : 217 - 235.
  • 9Benzi M. A Generalization of the Hermitian and Skew-Hermitian Splitting Iteration [ J ]. SlAM J Matrix Anal Appl,2009 (31) :360 -374.
  • 10Bai Z Z, Golub G H, Pan J Y. Preconditioned Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Semidefinite Linear Systems [ J ]. Numer M ath,2004 ( 98 ) : 1 - 32.

同被引文献17

  • 1陈晓兰.关于反循环矩阵的对角化问题[J].工科数学,1998,14(4):130-132. 被引量:3
  • 2Ng Michael K.Circulant and Skew-circulant Splitting Methods for Toeplitz Systems[J].Journal of Computational and Applied Mathematics,2003,159(1):101-108.
  • 3Bai Z Z,Golub G H,Ng M K.Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems[J].Siam J Matrix Anal Appl,2001,24(3):603-626.
  • 4Bai Z Z,Golub G H,Michael,et al.On Successive-Overrelaxation Acceleration of the Hermitian And Skew-Hermitian Splitting Iterations[J].Numerical Linear Algebra with Applications,2007,14(4):319-335.
  • 5Gu C,Tian Z.On the HSS Iteration Methods for Positive Definite Toeplitz Linear Systems[J].Journal of Computational and Applied Mathematics,2009,224(2):709-718.
  • 6Akhondi N,Toutounian F.Accelerated Circulant and Skew Circulant Splitting Methods for Hermitian Positive Definite Toeplitz Systems[J].Adv Numer Anal,2012,Art.ID 973407:17.
  • 7Chan R H,Ng M K.Conjugate Gradient Methods for Toeplitz Systems[J].Siam Review,1996,38(3):427-482.
  • 8吴炎,杨其强.Toeplitz矩阵的性质及其应用[J].琼州学院学报,2011,18(5):1-5. 被引量:2
  • 9Fang Chen,Yaolin Jiang,Qingquan Liu.ON STRUCTURED VARIANTS OF MODIFIED HSS ITERATION METHODS FOR COMPLEX TOEPLITZ LINEAR SYSTEMS[J].Journal of Computational Mathematics,2013,31(1):57-67. 被引量:2
  • 10黄毅.复正定矩阵的性质和分类[J].成都大学学报(自然科学版),2013,32(3):238-241. 被引量:2

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部