期刊文献+

基于SQL选择语句的聚类分析 被引量:1

Clustering analysis of statement selection based on SQL
下载PDF
导出
摘要 在数据挖掘中SQL语句常用于数据的特征规则,特别是聚类规则。因为仅仅用一些简单的SQL语句就可以同时创建特征规则和聚类规则。把SQL语句和其他应用软件结合起来,将提高创建t-加权和d-加权的能力,特别是在特征规则中进一步归一化的能力,其中t-加权用于衡量每条数据记录的典型性,d-加权用于衡量聚类区分原则中的差异性。基于概念树把层次结构转换成表格结构将影响SQL语句的编写和成功执行,并且把层次结构中的每一个树结构转换为相应的表结构,最终把整个层次结构转换为表结构,才能合理高效地设计查询程序。 The SQL statement in data mining is usually used for the data feature rule, especially for clustering rule. With just few simple SQL statements, the characteristic and clustering rules can be created simultaneously. By combinating SQL statement with other application softwares, it can enhance the ability of creating t-weight for measuring the typicality of each data record in the characteristic rule and d-weight for measuring the difference in clustering discrimination rule, specifically for the ability of further normalization in characteristic rule. Converting hierarchy structure into table structure based on concept tree will influencethe compilation and execution of the SQL statement. The right method is to transform each of concept tree in concept hierarchy into a corresponding table structure first, and then transform the whole hierarchy structure into table structure. In this way, the query program can be designed reasonably and efficiently.
出处 《现代电子技术》 2012年第14期39-41,共3页 Modern Electronics Technique
关键词 数据挖掘 层次结构 聚类规则 SQL语句 data mining hierarchy structure clustering rule SQL statement
  • 相关文献

参考文献9

  • 1Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158.
  • 2胡庆林,叶念渝,朱明富.数据挖掘中聚类算法的综述[J].计算机与数字工程,2007,35(2):17-20. 被引量:36
  • 3梁志荣.数据挖掘中聚类分析的技术方法[J].电脑开发与应用,2007,20(6):37-39. 被引量:15
  • 4CHEN M, HAN J, YU P S. Data mining: an overview from database perspective [J]. IEEE Trans. on Knowledge and Data Eng. , 1996, 8(6):866-883.
  • 5CHENG D W, FU A W, HAN J. Knowledge discovery in da- tabases: a rule-based attribute-oriented approaeh [C]// Pro- ceedings of International Symp. on Methodologies for Intelligent Systems. Charlotte, North Carolina: [s. n.], 1994: 164-173.
  • 6Cheung D W, Huang H Y, Fu A W, et al. Efficient rule-based attribute-oriented induction for data mining [J]. Journal of In- telligent Information Systems, 2000, 15(2) : 175-200.
  • 7GRAY J, CHAUDHURI S, BOSWORTH A, et al. Data cube: a relational aggregation operator generalizing group- by, cross-tab, and sub-totals [J]. Data Mining and Know- ledge Discovery, 1997, 1: 29-53.
  • 8Han J, Cai Y, Cercone N. Knowledge discovery in data- bases: An attribute-oriented approach [C]// Proceedings 18th International Conference Very Large Data Bases. Van- couver, British Columbia: [s. n. ], 1992: 547-559.
  • 9CAI Y. Attribute-oriented induction in relational databases [D]. Canada: Simon Fraser University, 1989.

二级参考文献11

  • 1钱锋,徐麟文.知识发现中的聚类分析及其应用[J].杭州师范大学学报(自然科学版),2001,5(1):34-37. 被引量:16
  • 2范明 孟小峰.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,2002..
  • 4Margaret H.Dunham.数据挖掘教程[M].北京:清华大学出版社,2005.
  • 5L. Kaufman and P. J Rousseeuw. Finding Groups in Data:An Introduction to Cluster Analysis [ M ]. New York: John Wiley & Sons, 1990
  • 6Raymond T. Ng and Jiawei Han. Efficient and effective clustering methods for spatial data mining [ R ]. Proceedings of the international Very Large Databases Conference,1994:144-155
  • 7范明,孟小峰译.数据挖掘:概念与技术——聚类分析[M].北京:机械工业出版社,2001:223-258
  • 8M Halkidi,Y Batistakis,M Vazirgiannis.Clustering algorithms and validity measures.IEEE,2001:3-22.
  • 9GEHRKE J,AGRAWAL R,GUNOPULOS D.Automatic Subspace Clustering of High Dimensional Data from Data caitons[J].ACM SIMOD,1998,72(2):94-105.
  • 10Ng RT,CALBERSON J.Efficient and Effective Clustering Methods for Spatial Data Mining[A].In:Porc of the Ⅴ[C].Santiago,Chile,1994:144-155.

共引文献161

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部