期刊文献+

基于距离和密度的时间序列异常检测方法研究 被引量:18

Research on discords detect on time series based on distance and density
下载PDF
导出
摘要 在时间序列的GMBR表示的基础上,首次提出将基于距离和基于密度的时间序列检测方法结合,给出了时间序列模式异常的定义,并用"异常特征值"来衡量时间序列模式的异常程度。根据所提出的模式异常的定义,在强力搜索算法的基础之上提出了新的时间序列异常检测算法GMBR-DD(Grid Minimum Bounding Rectangle-Discords Detect),该算法将基于距离和基于密度的异常检测方法结合,能够高效地发现时间序列中的异常模式。通过三组实验数据,对提出的异常时间序列定义和时间序列的异常检测算法进行了验证,实验结果表明所提出的时间序列异常检测算法能够有效地发现时间序列的异常变动,为决策提供了很好的平台和有力的工具。 It proposes the definition of the discords detect of time series based on the representation of the GMBR (Grid Minimum Bounding Rectangle) and it is the first time to combine the distance measure method with density. It uses the "detect eigenvalue" to weigh the detect degree of the time series. Based on the proposed definition of the discords detect, it gives the new discords detect algorithm named GMBR-DD (Grid Minimum Bounding RectangleDiscords Detect). This algorithm can find the discords time series with high-effect. It validates the definition and the proposed algorithm through three groups of the data. The experimental results show that the algorithm can catch the discords time series and the definition is reasonable. So the production provides a very effect fiat roof and a powerful tool in data mining of time series.
作者 孙梅玉
出处 《计算机工程与应用》 CSCD 2012年第20期11-17,22,共8页 Computer Engineering and Applications
基金 国家基金重点项目子课题(No.60825304)
关键词 时间序列 数据挖掘 异常检测 距离 密度 符号化表示 time series data mining discords detect distance density symbolic representation
  • 相关文献

参考文献15

  • 1Ma Junshui, Perkins S.Time-series novelty detection using one-class support vector machines[C]//Proceedings of the International Joint Conference on Neural Networks,2003.
  • 2Ma J, Perlcins S.Online novelty detection on temporal sequences[C]//Proceedings of the International Confer- ence on Knowledge Discovery and Data Mining.New York: ACM Press, 2003 : 24-27.
  • 3Shahabi C,Tian X,Zhao W.Tsa-tree: a wavelet-based ap- proach to improve the efficiency of mufti-level surprise and trend queries[C]//Proceedings of the 12th Interna- tional Conference on Scientific and Statistical Database Management.Washington- IEEE Computer Society, 2000: 55-68.
  • 4Keogh E, Lonardi S, Chiu W.Finding surprising pattems in a time series database in linear time and space[C]// Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2002 : 550-556.
  • 5Moradi M.Prostate cancer probability maps based on ul- trasound RF time series and SVM classifiers: a large scale in-vitro study[C]//Proceedings of MICCAI,2008.
  • 6Moradi M.Computer-aided diagnosis of prostate cancer with emphasis on ultrasoundbased approaches:a review[J]. Ultrasound Med Biol,2007,33(7): 1010-1028.
  • 7Povinelli R J.A new temporal pattern identification method for characterization and prediction of complex time series events[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(2).
  • 8Whitehead B, Hoyt W A.Function approximation approach to anomaly detection in propulsion system test data[J]. Journal of Propulsion and Power, 1995, 11 (5) : 1074-1076.
  • 9Decoste D.Mining multivariate time-series sensor data to discover behavior envelopes[C]//Proceedings of the 3rd Conference on Knowledge Discovery and Data Mining.[S.1.] : AAAI Press, 1997 : 151 - 154.
  • 10Chakrabarti S, Sarawagi S, Dom B.Mining surprising patterns using temporal description length[C]//Proceedings of the 24th International Conference on Very Large DataBases.San Francisco: Morgan ICaufmarm Publishers lnc, 1998 : 606-617.

二级参考文献14

  • 1潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2007,18(2):246-258. 被引量:41
  • 2Rafiei D,Mendelzon A.Similarity-based queries for time series data[C]//Proceedings of ACM SIGMOD Int'l Conference on Management of Data,Tucson,Arizona,May 1997,1997:13-25.
  • 3Pavlidis T,Horowitz S.Segmentation of plane curves[J].IEEE Transactions on Computers, 1974,C-23(8).
  • 4Faloutsos C,Ranganathan M,Manolopoulos Y.Fast subsequence matching in time-series databases[C]//Proceedings of ACM SIGMOD Int'l Conference on Management of Data,Minneapolis,Minnesota,May 1994,1994:419-429.
  • 5Keogh E,Kasetty S.On the need for time series data mining benchmarks:a survey and empirical demonstration[J].Data Mining and Knowledge Discovery,2003,7(4):349-371.
  • 6Agrawal R,Faloutsos C,Swami A.Efficient similarity search in sequence databases[C]//Proceedings of Foundations of Data Organizations and Algorithms( FODO ), Evanstone, Illinois, October 1993, 1993 : 69-84.
  • 7Chan K,Fu A W.Efficient time series matching by wavelets[C]// Proceedings of the 15th IEEE International Conference on Data Engineering, Sydney, Australia, March 23-26,1999 : 126-133.
  • 8Keogh E,Chakrabarti K,Pazzani M.Locally adaptive dimensionality reduction for indexing large time series databases[C]//Proceedings of ACM SIGMOD Conference Onmanagement of Data,Santa Barbara,May 21-24,2001 : 151-162.
  • 9Geurts P.Pattern extraction for time series classification [C]//Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery,Freiburg,2001,Germany,2001: 115-127.
  • 10Korn F,Jagadish H,Faloutsos C.Efficiently supporting ad hoc queries in large datasets of time sequences[C]//Peckham J.Pmc of the ACM SIGMOD Int'l Conf on Management of Data.Tucson: ACM Press, 1997:289-300.

共引文献1

同被引文献120

引证文献18

二级引证文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部