期刊文献+

一种Markov模型在协同克里格中的新应用

New application of Markov model in Cokriging
下载PDF
导出
摘要 协同区域化线性模型(LMC)和最初的Markov模型(MM1)被协同克里格用于融合软硬数据。但是当硬数据定义在较小的空间尺度时,MM1并不适合。对于上述情况,提出一种改进的Markov模型(MM2)。MM2模型的屏蔽效应假设是指某个位置的软数据可以屏蔽其他位置软数据对该位置硬数据的影响。实验结果表明,当硬数据定义在比软数据小的空间尺度时,MM2模型下的协同克里格方法有效。 The Linear Model of Coregionalization (LMC) and the Markov Model 1 (MM1) are proposed for Cokriging to fulfill the integration of the primary variable and the secondary one. However, when a secondary variable is defined on a much larger support than the primary variable, the MM1 is not appropriate. Then an improved Markov Model 2 (MM2) for such a case is presented to meet the above condition. The MM2 screening hypothesis indicates that the secondary datum screens the influence of all further away secondary data on primary datum. Experimental results show that Cokriging under the MM2 is practical when a secondary variable is defined on a much larger support than the primary variable.
作者 张挺 杜奕
出处 《计算机工程与应用》 CSCD 2012年第20期28-31,共4页 Computer Engineering and Applications
基金 上海市自然科学基金(No.11ZR1413700) 上海市教育委员会科研创新项目(No.09YZ454)
关键词 协同克里格 MARKOV模型 屏蔽效应 硬数据 软数据 Cokriging Markov model screening effect hard data soft data
  • 相关文献

参考文献9

  • 1Zhang T, Lu D T, Li D L.A statistical information recon- struction method of images based on multiple-point geosta- tistics integrating soft data with hard data[C]//Proceed- ings of ISCSCT 2008, Shanghai,China,2008 : 573-578.
  • 2LU DeTang1,2,3, ZHANG Ting1,2,3, YANG JiaQing1,2,3, LI DaoLun1,2,3 & KONG XiangYan1,2,3 1 Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China,2 Research Center of Oil and Natural Gas, University of Science and Technology of China, Hefei 230027, China,3 Key Laboratory of Software in Computing and Communication of Anhui Province, University of Science and Technology of China, Hefei 230027, China.A reconstruction method of porous media integrating soft data with hard data[J].Chinese Science Bulletin,2009,54(11):1876-1885. 被引量:17
  • 3Zhang T, Lu D T, Li D L.Porous media reconsauclion using a cross-section image and multiple-point geostatistics[C]// Proceedings of ICACC 2009, Singapore, 2009 : 24-29.
  • 4Shmaryan L E, Journel A G.Two Markov models and their application[J].Mathematical Geology, 1999, 31 (8) : 965-988.
  • 5Joumel A G.Markov models for cross-covariances[J].Mathe- matical Geology, 1999,31 ( 8 ) : 955-964.
  • 6Eulogio P I, Peter M A.Modelling the semivariograms and cross-semivariograms required in downscaling Cokriging by numerical convolution-deconvolution[J].Computers & Geosciences, 2007,33 (9) : 1273-1284.
  • 7Wenlong X, Tran T T, Srivastava R M,et al.lntegrating seismic data in reservoir modeling:the colocated Cokrig- ing alternative[EB/OL].[2011-09-12].http ://132.248.182.189/ cursos/gest/Articulos.
  • 8Remy N,Boucher A, Wu J B.Applied geostatistics with SGeMS: a users' guide[M].New York: Cambridge Uni- versity Press, 2009:108-134.
  • 9Almeida A, Journel A G.Joint simulation of multiple vari- ables with a Markov-type coregionalization model[J].Math- cmatical Geology, 1996,26 (5) : 565-588.

二级参考文献8

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部