期刊文献+

多维敏感属性隐私保护数据发布方法 被引量:3

Privacy-preserving data publishing method for dataset with multi-dimensional sensitive attributes
下载PDF
导出
摘要 在匿名数据发布中,当敏感属性为多维时,攻击者有可能能够获取一维或几维敏感属性信息,并且结合准标识符信息对其他敏感属性进行推理攻击。针对此问题提出(Dou-l)-匿名模型,更好地保护了敏感信息。基于多维桶和分解思想,提出(Dou-l)-匿名算法,使得即便攻击者掌握了部分敏感数据,仍然能较好地保护其他敏感属性数据的隐私安全性。实际数据实验证明,算法可以较好地均衡发布数据的安全性和可用性。 When publishing data with multiple sensitive attributes, an adversary may be able to get some sensitive attribute information, attack other sensitive attribute information through a combination of this background knowledge with quasi-identifier information. To avoid this problem, a formal multiple sensitive attributes data publication model is defined, named (Dou-l)-anonymity. The corresponding (Dou-l)-anonymity implementation algorithm is proposed based on the idea of multi-sensitive bucketization and lossy join. The findings are verified by experiments with real data.
出处 《计算机工程与应用》 CSCD 2012年第20期136-141,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61003057)
关键词 隐私保护 多敏感属性 数据发布 背景知识 privacy preserving multiple sensitive attributes data publishing background knowledge
  • 相关文献

参考文献8

  • 1Sweeney L.K-anonymity: a model for protecting privacy[J]. International Journal on Uncertainty, Fuzziness, and Knowledge-Based Systems,2002,10(5) :557-570.
  • 2Samarati EProtecting respondents' identities in microdata release[J].IEEE Transactions on Knowledge and Data Engineering(YKDE) ,2001,13(6) : 1010-1027.
  • 3Machanavajjhala A, Gehrke J, Kefer D.l-diversity: privacy beyond K-anonymity[C]//Proceedings of the 22nd Inter- national Conference on Data Engineering, Atlanta, Geor- gia, 2006.
  • 4Zhang Q, Koudas N, Srivastava D, et al.Aggregate query answering on anonymized tables[C]//Proc of International Conference on Data Engineering(ICDE),2007:l16-125.
  • 5Xiao X,Tao Y.Anatomy:simple and effective privacy pres- ervation[C]//Proceedings of the 32nd International Con- ference on Very Large Data Bases, Seoul, Korea, 2006: 139-150.
  • 6Li J X, Tao Y F, Xiao X K.Preservation of proximity privacy in publishing numerical sensitive data[C]//Pro- ceedings of SIGMOD' 08, Vancouver BC, Canada, 2008.
  • 7杨晓春,王雅哲,王斌,于戈.数据发布中面向多敏感属性的隐私保护方法[J].计算机学报,2008,31(4):574-587. 被引量:59
  • 8Aggarwal C.On K-anonymity and the curse of dimen- sionality[C]//Proceedings of the 31st International Con- ference on Very Large Data Bases,Trondheim,Norway, 2005 : 901-909.

二级参考文献18

  • 1杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 2Lwuchukwu T, Naughton J. K-anonymization as spatial indexing: Toward sealable and incremental anonymization// Proceedings of the 33rd International Conference on Very Large Data Bases. Vienna, Austria, 2007:746-757
  • 3Wong R, Fu A, Wang D, Pei J. Minimality attack in privacy preserving data publishing//Proceedings of the 33rd International Conference on Very Large Data Bases. Vienna, Aus tria, 2007: 543-554
  • 4Sweeney L. K anonymity: A model for protecting privacy. International Journal on Uncertainty, Fuzziness, and Knowl edge-Based Systems, 2002, 10(5): 557-570
  • 5Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information//Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Seattle, Washington, 1998: 188
  • 6Xiao X, Tao Y. Anatomy: Simple and effective privacy preservation//Proceedings of the 32nd International Conference on Very Large Data Bases. Seoul, Korea, 2006:139-150
  • 7Machanavajjhala A, Gehrke J, and Kefer D. l-diversity: Privacy beyond κ -anonymity//Proceedings of the 22nd International Conference on Data Engineering. Atlanta, Georgia,2006:24
  • 8Bayardo R, Agrawal R. Data privacy through optimal κ-anonymization//Proccedings of the 21st International Conference on Data Engineering. Tokyo, Japan, 2005:217-228
  • 9LeFevre K, DeWitt D, Ramakrishnan R. Incognito: Efficient full-domain κ-anonymity//Proceedings of the ACM SIGMOD International Conference on Management of Data. Baltimore, Maryland, 2005:49-60
  • 10Meyerson A, Williams R. On the complexity of optimal κ-anonymity//Proceedings of the 23rd ACM SIGACT SIG- MOD-SIGART Symposium on Principles of Database Systems. Paris, France 2004: 223-228

共引文献58

同被引文献20

  • 1Fung B C M, Wang Ke, Chen Rui, et al. Privacy-preser- ving data publishing: A survey of recent developments[J]. ACM Computing Surveys, 2010,42 (4) : 1-55.
  • 2Sweeny L. K-anonymity: A model for protecting privacy [ J ]. International Journal on Uncertainty Fuzziness and Knowledge-based Systems, 2002,10 ( 5 ) : 557-570.
  • 3Kristen LeFevre, David J DeWitt, Raghu Ramakrishnan. Mondrian multidimensional K-anonymity [ C ]/! Proceed- ings of the 22nd International Conference on Data Engi- neering. 2006:25.
  • 4Maheshwarkar Nidhi, Pathak kshitij, Chourey Vivekanand. Performance evaluation of vatious K-anonymity techniques [ C l// The 4th International Conference on Machine Vi- sion:Computer Vision and Image Analysis; Pattern Recogni- tion and Basic Technologies. 2012:8.
  • 5Sofia-Comas Jordi, Domingo-Ferrer Josep. Probabilistic k- anonymity through microaggregation and data swapping [ C]/! 2012 IEEE International Conference on Fuzzy Sys- tems. 2012 : 1-8.
  • 6Machanavajjhala A, Kifer D, Gehrkej, et al. L-diversity: Privacy beyond K-anonymity [ J ]. ACM Transactions on Knowledge Discovery from Data, 2007,1 ( 1 ) : 1-12.
  • 7Wong R C-W, Li Jiu-yong, Fu A W-C, et al. (a,k)-a- nonymous data publishing[ J]. Journal of Intelligent Infor- mation Systems, 2009,53 (2) : 209-234.
  • 8Li Ninghui, Li Tiancheng, Venkatasubramanian S. t-Close- ness: Privacy beyond k-anonymity and 1-diversity [ C l// The 23rd International Conference on Data Engineering. 2007 : 106-115.
  • 9Sha Chaofeng, Li Yi, Zhou Aoying. On t-closeness with KL-divergence and semantic privacy [ C ]//The 15th Inter- national Conference on Database Systems for Advanced Ap- plications. 2010:153-167.
  • 10SWEENY L. K-anonymity:a model for protecting privacy[J].International Journal on Uncertainty Fuzziness and Knowledge-Based Systems,2002,(05):557-570.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部