期刊文献+

不完备数据下的免疫分类算法 被引量:3

Immune classification algorithm under incomplete data
下载PDF
导出
摘要 人工免疫识别系统(AIRS)是受生物免疫系统的启示而研发的一种比较有效的分类器,但也存在记忆细胞数目过于庞大,分类精度不高,特别是在数据不完备的情况下,分类精度低等缺陷。为了解决这个问题,提出了一种不完备数据下的免疫分类算法(ICAU),算法引入半监督学习机制和分类器融合投票决策的思想,利用多个AIRS分类器互相帮助学习训练,来提高AIRS在不完备数据下的分类精度。在UCI数据集上进行了实验,结果验证了ICAU算法的有效性。 Artificial Immune Recognition System (AIRS) that is inspired by natural immune system has been developed as an efficient classifier. But the number of memory cells is too large and the accuracy of AIRS is not high, especially in the case of incomplete data. To solve the problem, this paper presents Immune Classification Algorithm Under (ICAU) incomplete data. It introduces semi-supervised learning, classifier fusion and vote to decision ideas, uses multiple AIRS classifiers to learn to refine each other. In the UCI data sets, experimental results prove the validity of the ICAU algorithm.
出处 《计算机工程与应用》 CSCD 2012年第20期172-176,共5页 Computer Engineering and Applications
基金 福建省高校科研专项重点项目(No.JK2009006) 福建省高校服务海西建设重点项目
关键词 人工免疫系统 不完备数据 分类 artificial immune incomplete data classification
  • 相关文献

参考文献11

  • 1Timmis J, Neal M.A resource limited artificial immune system for data analysis[J].Knowledge-Based Systems, 2001,14(34) : 121-130.
  • 2Watkins A, Timmis J, Boggess L.Artificial Immune Rec- ognition System(AIRS) :an immune inspired supervised learning algorithm[J].Genetic Programming and Evolv- able Machines, 2004,5 (3) : 291-317.
  • 3Zhong Yanfei, Zhang Lianpei, Huang Bo.An unsuper-vised artificial immune classifier for multi/hyperspec- tral remote sensing imagery[J].IEEE Transactions on Geosciences and Remote Sensing, 2006,4 (2) : 420-431.
  • 4Seeker A, Freitas S, Timrnis J.AISEC: an artificial immune system for E-mail classification[C]//Proceedings of the Congress on Evolutionary Computation.Canberra, Austra- lia: IEEE, 2003 : 131-139.
  • 5Xu Chunlin, Li Tao,Huang Xuemei,et al.Artificial im- mune algorithm based system for forecasting weather[J]. Journal of Sichuan University: Engineering Science Edi- tion, 2005,37(5) : 125-129.
  • 6Polat K, Sahan S, Kodaz H, et al.A new classification method to diagnosis liver disorders: supervised artificial immune system(AIRS)[C]//Proceedings of the 1EEE 13th Signal Processing and Commtmications Applications Con- ference.New York, USA: IEEE, 2005 : 169-174.
  • 7Watkins A, Timmis J.Exploiting parallelism inherent in AIRS, an artificial immune classifier[EB/OL]. (2004) [2011-01].http://www.cs.kent.ac.uk/?abwS/.
  • 8彭凌西,刘晓洁,李涛,卢正添,曾金全,刘才铭.一种基于免疫的监督式分类算法[J].四川大学学报(工程科学版),2008,40(2):101-106. 被引量:4
  • 9周志华.半监督学习中的协同训练风范[M]//机器学习及其应用.北京:清华大学出版社,2007:259-275.
  • 10Zhou Z H, Li M.Tri-training: exploiting unlabeled data using three classifiers[J].IEEE Trans on Knowledge and Data Engineering,2005,17( 11 ) : 1529-1541.

二级参考文献18

  • 1LI Tao.An immunity based network security risk estimation[J].Science in China(Series F),2005,48(5):557-578. 被引量:30
  • 2LI Tao.An immune based dynamic intrusion detection model[J].Chinese Science Bulletin,2005,50(22):2650-2657. 被引量:17
  • 3Sarafijanovic S, Le Boudec J Y. An artificial immune systern approach with secondary response for misbehavior detection in mobile ad hoc networks [ J]. IEEE Transactions on Neural Networks, 2005,16(5) :1076 - 1087
  • 4Campelo F, Guimaraes F G, Igarashi H, et al. A modified immune network algorithm for multimedal electromagnetic problems [ J ]. IEEE Transactions on Magnetics, 2006, 42 (4): 1111-1114
  • 5Swiecicka A, Seredynski F, Zomaya A Y. Multiproces-sor scheduling and rescheduling with use of cellular automata and artificial immune system support [ J ] . IEEE Transactions on Parallel and Distributed Systems, 2006, 17 ( 3 ) : 253 - 262.
  • 6Bersini Varela. The immune learning mechanisms: reinforcement, recruitment and their applications [ C ]//Computing with Biological Metaphors. New York, USA: Chapman and Hall, 1993 : 166 - 192.
  • 7De Castro L N, Von Zuben F. The clonal selection algorithm with engineering applications [ C ]//Proceedings of Genetic and Evolutionary Computation Conference. USA: Morgan Kaufman Publishers, 2000:36-37
  • 8De Castro L N, Timmis J. An artificial immune network for multi-modal function optimization [ C ]//Proceedings 2002 Congress on Evolutionary Computation. Honolulu, Hawaii, USA : IEEE ,2002:699 - 704
  • 9Timmis J, Neal M. A resource limited artificial immune system for data analysis[ J]. Knowledge Based Systems, 2001, 14(324) :121 -130.
  • 10Watkins A, Timmis J, Boggess L. Artificial Immune Recognition System (AIRS): An immune-inspired supervised learning algorithm[J]. Genetic Programming and Evolvable Machines, 2004,5 (3) :291 - 317

共引文献14

同被引文献28

  • 1叶嫒嫒.多UCAV协同任务规划方法研究[D].长沙:国防科学技术大学,2005.
  • 2Aydin l,Karakose M , Akin E. An adaptive artificial immune system for fault classification [ J]. Journal of Intelligent Man- ufacturing,2012,23 (5) : 1489 - 1499.
  • 3Chang S Y,Yeh T Y. An artificial immune classifier for credit scoring analysis [ J ]. Applied Soft Computing, 2012,12 ( 2 ) : 611 -618.
  • 4Nicholas, W. , Pradeep, R. , Grog S. , Lundy, L. Artificial immune systems for the detection of credit card fraud : an ar- chitecture, prototype and preliminary results [ J ]. Information Systems Journal,2012,22( 1 ) : 53 -76.
  • 5Binh L N, Huynh T L, Pang K K. Combating Mobile Spam through Botnet Detection using Artificial Immune Systems [ Jl. Journal of Universal Computer Science, 2012, 18 ( 6 ) : 750 - 774.
  • 6Samigulina G A. Development of decision support systems based on intellectual teehnology of artificial immune systems [J]. Automation and Remote Control,2012,73 (2): 397 - 403.
  • 7Watkins A, Timmis J. Exploiting parallelism inherent in AIRS, artificial immune classifier [EB/OL]. ( 2012 ) [2012 -01 ]. http://www, es. kent. ae. uk/? abw5/.
  • 8O' Rourke K P, Bailey T G, Hill R, et al. Dynamic routing of unmanned aerial vehicles using reactive tabs search [ J ]. Military Operations Research Journal, 2001,6(1) :5 -30.
  • 9Harder R W. A Java universal vehicle router in sup- port of routing unmanned aerial vehicles air missions[J]. Ohio: Air Force Institute of Technology. Interna- tional Transactions in Operational Research, 2004,11 (3) :259 -275.
  • 10Alighanbari M. Task Assignment Algorithms for Teams of UAVs in Dynamic Environments[ D ]. Cambridge: Massachusetts Institute of Technology, 2004:45 - 61.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部