期刊文献+

MWCNTs/多孔ZnO纳米材料的制备及室温NO气敏性研究 被引量:2

Preparation of multi-walled carbon nanotubes-porous ZnO nanosheets composites and its gas sensor properties for NO detection at room temperature
下载PDF
导出
摘要 为开发室温气敏传感器材料,以Zn(NO3)2.6H2O为锌源、尿素为沉淀剂,在制备水合碱式碳酸锌(Zn4CO3(OH)6.H2O)的过程中加入羧基化的MWCNTs(MWCNT-COOH),焙烧制备了MWCNTs/ZnO复合材料.采用XRD,SEM和TEM等对其进行了分析.结果表明:复合材料中MWCNTs分散均匀,ZnO呈多孔纳米片状,纳米片由多个尺寸在10~20 nm的ZnO颗粒组成;在室温、空气湿度为50%的氛围中测试复合材料对NO的气敏响应发现,复合材料对体积浓度1×10-4的NO气敏响应灵敏度大约是MWCNT-COOH的3倍,明显高于MWCNT-COOH;对比加入不同量MWCNT-COOH制备的3种复合材料对NO的气敏性可知,加入200 mg MWCNT-COOH所制备的复合材料对低浓度(体积浓度≤50×10-6)的NO气体表现出较高的灵敏度. To develop sensor materials at room temperature, multi-walled carbon nanotubes and ZnO composites were synthesized by using urea, zinc nitrate and carboxylated MWCNTs( MWCNT- COOH) as raw materials with homogeneous precipitation method and calcination. The structures and morphologies of the MWCNTs/ZnO composites were characterized by XRD, SEM and TEM. The results showed that a homogeneous distribution of MWCNTs in the composites was observed while ZnO existed as porous nanosheets consisting of many ZnO nan- opartieles. The sensor response of the composites to NO was examined at room temperature with a relative hu- midity of 50%. The MWCNTs/ZnO sensor's sensitivity was increased by a factor of three in comparison with that of MWCNT- COOH for NO at 1 × 10-4 ,because the porous ZnO nanosheets had larger surface area and the electron transfer between MWCNTs and ZnO could facilitate the decrease of the MWCNTs resistance. Hy- brid material with 200 mg MWCNT -- COOH exhibits higher response than other hybrid materials for NO de- tection at low concentrations ( ≤ 50×10-6).
出处 《材料科学与工艺》 EI CAS CSCD 北大核心 2012年第3期24-28,共5页 Materials Science and Technology
基金 国家自然科学基金资助项目(21076066) 黑龙江省自然科学基金重点项目(ZD201002) 黑龙江大学高层次人才(创新团队)支持计划(Hdtd2010-02) 黑龙江大实验室开放基金项目(11K075 11K076)
关键词 多壁碳纳米管 多孔ZnO纳米片 NO 室温 气敏特性 multi-walled carbon nanotubes porous ZnO nanosheets NO room temperature gas sensor
  • 相关文献

参考文献14

  • 1LUG H, OCOLA L E, CHEN J H. Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and muhiwalled carbon nanotubes [ J ]. Adv Mater, 2009,21 ( 24 ) : 2487 - 2491.
  • 2SUP G, PAN T T. Fabrication of a room-temperature NOz gas sensor based on WO3 films and WO3/MWCNT nanocomposite films by combining polyol process with metal organic decomposition method [ J ]. Materials Chemistry and Physics,2011,125 ( 3 ) :351 - 357.
  • 3ONG W L, LIM S X, SOW C H,et al. Synthesis and field emission properties of well-aligned ZnO nanowireson buffer layer[ J]. Thin Solid Films ,2010,518 (24) : 139 - 142.
  • 4YAN H W, HOU J B, FU Z P,et al. Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation [ J ]. Materials Research Bulletin,2009,44 (10) : 1954 - 1958.
  • 5XIE W, LI Y Z, SUN W, et al. Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability [ J ]. Journal of Photochemistry and Photobiology A : Chemistry,2010,216 (2/3) : 149 - 155.
  • 6ZHANG Y P,SUN X W,PAN L K,et al. Carbon nanotube-ZnO nanocomposite electrodes for supercapacitors [ J ]. Solid State Ionics, 2009,180 (32/33/34/35) : 1525 - 1528.
  • 7ZHANG W D. Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays [ J ]. Nanotechnology,2006,17 (4) : 1036 - 1040.
  • 8CHRISSANTHOPOULOS A, BASKOUTAS S, BOUROPOULOS N,et al. Novel ZnO nanostructures grown on carbon nanotubes by thermal evaporation [ J ]. Thin Solid Films,2007,515 (24) :8524 - 8528.
  • 9LI L, WU G, XU B Q. Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids [ J]. Carbon,2006,44 (14) : 2973 - 2983.
  • 10LIU Y,ZHOU J E,LARBOT A,et al. Preparation and characterization of nano-zinc oxide [ J ]. Journal of Materials Processing Technology, 2007, 189 ( 1/2/3 ) : 379 - 383.

同被引文献14

  • 1Zhang J,Wang SR,Xu M J,et al.Department Polypyrrole-Coated SnO2 Hollow Spheres and Their Application for Ammonia Sensor [J].J.Phys.Chem.C,2008,112(46):17804-17808.
  • 2Phan D T,Chung G S.Surface Acoustic Wave Hydrogen Sensors Based on ZnO Nanoparticles Incorporated with a Pt Catalyst[J].Sensors and Actuators 5,2012,161:341-348.
  • 3Daneshvar N,Aber S,Dorraji M S,et al.Pholocatalytic Degradation of The Insecticide Diazinon in the Presence of Prepared Nanocrystalline ZnO Powders Under Irradiation of UV-C Light[J].Separation and Purification Technology,2007,58:91-98.
  • 4Zhang AP,Li H B,Pan L K.Capacitive Behavior of Graphene-ZnO Composite Film for Supercapacitors [J].Journal of Electroanalytical Chemistry t2009,634:68-71.
  • 5Khoang N D,Hong H S,Trung DD,et al.On-chip Growth of Wafer-scale Planar-type ZnO Nanorod Sensors for Effective Detection of CO Gas [J] .Sensors and Actuators B,2013,181:529-536.
  • 6Stankovich S,Dikin D A,Dommett G H B,et al.Graphene-based Composite Materials[J].Nature,2006,442:282-286.
  • 7Geim A K,Novoselov K S.The Rise of Graphene[J].Nat Mater,2007,6:183-191.
  • 8Wu J L,Shen X P,Jiang L,et al.Solvothermal Synthesis and Characterization of Sandwich-like Graphene/ZnO Nanocomposites[J].Applied Surface Science,2010,256:2826-2830.
  • 9Singh G,Choudhary A,Haranath D,et al.ZnO Decorated Luminescent Graphene as a Potential Cas Sensor at Room Temperature[J].Carbon,2012,50:385-394.
  • 10Cuong T V,Pham V H,Chung J S.Solution-processed ZnO-chemically Converted Graphene Gas Sensor[J] .Materials Letters,2010,64:2479-2482.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部