摘要
胡塞尔的数学学习经历是建立其现象学哲学思想的一个重要的基础,在其前期的《算术哲学》中他试图通过对数学基本概念的澄清来稳定数学的基础,在晚期的《论几何学的起源》中他认为几何学自身具备明见性的特点,应该回溯几何学的最源初的开端。胡塞尔关于数学起源的思想对今天的启示是数学的生活世界是可能的,现象学还原方法是数学史学研究的一个重要方法。
Husserl's mathematical learning experience is an important foundation for building the philosophy of phenomenology. In his early work of Mathematical Philosophy, he tries to stabilize the foundation of mathematics through clarifying some basic concepts in mathematics. In his late work of The Origin of Geometry, he believes that geometry is self-evident, and people should go back to the origin of geometry. Husserl's ideas on mathematical origin inspire today's world in the following ways: life world of mathematics is possible; phenomenological reduction is an important method of historical research on mathematics.
出处
《黄山学院学报》
2012年第3期13-17,共5页
Journal of Huangshan University
基金
教育部人文社会科学研究青年基金(12YJC880143)
关键词
胡塞尔
数的起源
几何学的起源
生活世界
现象学还原
Husserl
the origin of number
the origin of geometry
life world
phenomenological reduction