期刊文献+

高速压制成形粉末流动过程的格子Boltzmann方法数值模拟 被引量:4

Numerical simulation of powder flow in high velocity compaction by lattice Boltzmann method
下载PDF
导出
摘要 根据高速压制工艺过程的特点,底部和侧面边界采用反弹与反射的混合格式,顶部通过改变分布函数构造能模拟动态压制过程的边界格式。利用粉体的初始密度和压制最大理想密度建立一个动态的松弛函数来代替格子Boltzmann方法的固定松弛时间。对圆柱体及单级台阶的圆柱体模具的高速压制成形过程进行二维数值模拟,直观显示压制过程中粉末的流动以及应力波的形成与传播过程。模拟结果表明:模具形状对应力波的波形有较大影响;压制完成后,圆柱体压坯最大密度差为12 mg/cm3,密度分布均匀且左右对称,压坯顶部和底部密度较中间部分密度稍大,与实验结果基本相似;圆柱体压坯中存在密度较低的横向窄带区域,揭示成形坯有可能形成分层或断裂。 According to the characteristics of high velocity compaction process, the rebound and reflection mixed boundary condition was used on the bottom and sides of the mould. By changing distribution function, a kind of boundary condition which can simulate the dynamic process was proposed. A relaxation function was established according to the powder flow characteristic using initial and maximum density. Two-dimensional numerical simulations were given to cylinder mould and single step cylinder mould. The dynamic evolution process of powders and the stress wave transformation process were presented. The results indicate that the shape of the mould has a great influence on the wave pattern of stress. The density of green compact is uniformly and symmetrically distributed, and the greatest density difference is 12 mg/cm^3. The top and bottom parts have slight higher density than the middle part. These results are consistent with the experimental results. A narrow low density band is found in the green compact which reveals that there may exist density stratification.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2012年第6期1754-1762,共9页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(50874123 51174236) 国家重点基础研究发展计划资助项目(2011CB606306)
关键词 高速压制 格子BOLTZMANN方法 松弛函数 应力波 high velocity compaction lattice Boltzmann method relaxation function stress wave
  • 相关文献

参考文献13

  • 1SKGLUND E High density P/M components by high velocity compaction[C]//Proeeedings of 2001 International Conference on Powder Transmission Components. Ypsilanti: MPIE, 2001: 16-17.
  • 2ORBARL. New research directions in powder metallurgy[J]. Romanian Reports in Physics, 2004, 56(3): 505-516.
  • 3RICHARD F. HVC punches PM to new mass production limits[J]. Metal Powder Report, 2002, 57(9): 26-30.
  • 4周晟宇,尹海清,曲选辉.粉末冶金高速压制技术的研究进展[J].材料导报,2007,21(7):79-81. 被引量:13
  • 5HAGGBLAD H A, HOCKAUF M, ERIKSSON M, BERGGREN C. Simulation of high velocity compaction of powder in a rubber mould with characterization of silicone rubber and titanium powder using a modified split Hopkinson set-up[J]. Powder Technology, 2005, 154: 33-42.
  • 6KUMAR D R, KUMAR R K, PHILIP P K. Simulation of dynamic compaction of metal powders[J]. Journal of Applied Physics, 1999, 85(2): 767-775.
  • 7郑洲顺,王爽,郑珊,曲选辉.基于离散单元法的粉末高速压制流动过程模拟[J].稀有金属材料与工程,2010,39(12):2132-2136. 被引量:15
  • 8郑洲顺,于万春子,诸葛金平,梁登,三璞玉,罗娟.粉末高速压制成形二维流动的元胞自动机模拟[J].系统仿真学报,2009,21(21):6825-6828. 被引量:1
  • 9沈元勋,肖志瑜,温利平,潘国如,李元元.粉末冶金高速压制技术的原理、特点及其研究进展[J].粉末冶金工业,2006,16(3):19-23. 被引量:33
  • 10TANG Gui-hua, GU Xiao-jun, BARBER R, EMERSON D, ZHANG Yong-hao. Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow[J]. Physical Review E, 2008, 78(2): 026706-026714.

二级参考文献59

共引文献68

同被引文献50

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部