期刊文献+

基于压缩感知的加密图像多描述编码方法 被引量:1

Encryption Image Multiple Description Coding Method Based on Compressive Sensing
下载PDF
导出
摘要 基于压缩感知和多描述编码理论,提出了一种鲁棒性好且易于实现的加密图像压缩方法.通过对稀疏变换后的图像进行交织抽取,对所得到的各系数块分别进行加密运算,然后经过分块压缩测量、量化和打包形成多描述压缩码流.解码端根据接收到的各码流,通过求解优化问题和解密运算重构原图像.实验结果表明,相对于同类方法,该方法能有效地提高图像传输的鲁棒性以及重构图像的主观和客观质量. A novel encryption image compression method was proposed based on compressive sensing and multiple description coding theory in this paper. This method is robust to packet loss and bit error,and has the advantage of easy implementation. The original image is firstly performed scarifying transforma- tion,followed by encryption operation for each coefficients block generated by interleaving extraction in transform domain. The encrypted image compression is achieved by block compressive sensing and multiple descriptions coding. At the decoder side, the original image is recovered by solving an optimization problem and decryption operation. Experiment results show that compared with the similar method, the proposed method can effectively improve the robustness of the image transmission and enhance the reconstructed image quality in both PSNR and visual.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2012年第3期274-278,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 湖北省自然科学基金重点资助项目(2010CDA02001) 湖北省自然科学基金资助项目(2010CDB02001)
关键词 压缩感知 稀疏表示 图像加密 多描述编码 compressive sensing sparse transformation eneryption image multiple descriptioncoding
  • 相关文献

参考文献13

  • 1Johnson M,Ishwar P,Prabhakaran V,et al. On compressing encrypted data [C]// IEEE Trans Signal Processing 2004, 52:2992-3006.
  • 2Schonberg D,Draper S,Ramachandran K. On compression of encrypted images [C]// Proc International conference on Image processing, Atlanta,GA2006 : 269-272.
  • 3Kumar A A, Makur A. Distributed source coding based encryption and lossless compression of gray scale and color ima- ges [C]//Proc IEEE 10th workshop on multimedia and signal processing. Cairns,Australia,2008:760-764.
  • 4Kumar A A, Makur A. Lossy Compression of Encrypted Image by Compressive Sensing Technique [C]// TENCON 2009-2009 IEEE Region 10 Conference,23-26 Jan,2009:l-5.
  • 5Candes E J, Wakin M B. An introduction to compressive sampling [C]// IEEE signal processing magazine, 2008,25: 21-30.
  • 6Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory,2006,52(4) : 1289-1306.
  • 7刘丹华,石光明,周佳社,高大化,吴家骥.基于Compressed Sensing框架的图像多描述编码方法[J].红外与毫米波学报,2009,28(4):298-302. 被引量:21
  • 8Rachlin Y,Baron D. The Secrecy of Compressed Sensing Measurements[C]// Proe Allerton Conference on Communica- tion, Control and Computing, Monticello, 2008.
  • 9Gan L. Block compressed sensing of natural image [C]// International Conference on Digital Signal Processing, 2007: 403-406.
  • 10Santosa F,Symes W W. Linear inversion of band-limited reflection seismograms [J]. SIAM Journal on Scientific and Statistical Computing,1986(7) :1307-1318.

二级参考文献15

  • 1Goyal V K. Multiple description coding : Compression meets the network [ J ]. IEEE Signal Processing Magazine ,2001, 18(5) :74--93.
  • 2Wang Y, Lin S N. Error-resilient video coding using multiple description motion compensation [ J ]. IEEE Trans. Circuits and Systems for Video Technology,2002,12(6) :438-- 452.
  • 3Vaishampayan V A. Design of multiple description scalar quantizers [ J ]. IEEE Trans. Inform. Theory, 1993,39 ( 3 ) : 821--834.
  • 4Fleming M, Effros M. Generalized multiple description vector quantization [ C ]. Proceedings of the IEEE Data Compression Conference, DCC'99, Snowbird, UT, USA, 29-- 31 March, 1999:3--12.
  • 5Wang Y, Orchard M T, Vaishampayan V A, et al. Multiple description coding using pairwise correlating transforms[ J]. IEEE Transon Image Processing,2001,10(3) :351--366.
  • 6Purl R, Ramchandran K. Multiple description source coding using forward error correction[ C]. The 33rd Asilomar Conference on Signals, Systems and Computer, 1999,1 : 342-- 346.
  • 7Sarshar N, Wu X L. A practical approach to joint networksource coding [ C ]. Proceedings of the Data Compression Conference ( DCC' 06) ,2006:93--102.
  • 8Candes E J. Compressive sampling[ C]. Proceedings of International Congress of Mathematics ,2006,3 : 1433--1452.
  • 9Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[ J ]. IEEE Trans. on Information Theory,2006,52 (2) :489--509.
  • 10Donoho D L. Compressed sensing [ J ]. IEEE Trans. Information Theory,2006,52(4) : 1289--1306.

共引文献20

同被引文献10

  • 1Candes E J,Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions [J]. J Founda- tions of Computational Mathematics, 2006,6 (2) : 227-254.
  • 2Candes E J,Wakin M,Boyd S. Enhancing sparsity by reweighted tl minimization [J]. Journal of Fourier Analysis and AnDlications. 2008.14 ( 5), 877-905.
  • 3Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing [J]. Inverse Problems, 2008,24(20) : 13-14.
  • 4Lee K,Ho J,Kriegman D J. Acquiring linear subspaces for face recognition under variable lighting [J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence,2005,27(5):684-698.
  • 5Wright J, Yang A,Ganesh A, et al. Robust face recognition via sparse representation [J]. IEEE TK-PAMI, 2009,32 (2) : 210-227.
  • 6Candes E,Tao T. Near optimal signal recovery from random projections:universal encoding strategies[J]. IEEE Trans Inf Theory, 2006,52(12) :5406-5425.
  • 7Cetin M,Karl W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization [J]. IEEE T-IP, 2001,10(4) : 623-631.
  • 8Aniel Gonzdlez-Jimenez,JoseLuis Alba-Castro. Toward pose-invariant 2-D face recognition through point distribution models and facial symmetry [J].IEEE Transactions on Information Forensics and Security, 2007,2 (3) : 413-429.
  • 9Donoho D. De-noising by soft shareholding [J]. IEEE Trans Inf Theory,1995,41 (3):613-627.
  • 10孙友涛,杜丽莉.一种带有正则约束的非负矩阵分解算法[J].内蒙古师范大学学报(自然科学汉文版),2008,37(4):477-481. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部