期刊文献+

高密度脉冲电流对冷轧钛板力学性能的改善(英文) 被引量:3

Improvement of mechanical properties of cold-rolled commercially pure Ti sheet by high density electropulsing
下载PDF
导出
摘要 对冷轧钛板试样进行高密度脉冲电流处理(最大电流密度7.22kA/mm2,周期110μs)。应用单向拉伸试验对不同状态试样的力学性能进行测试,通过光学金相显微镜(OM)观察试样的微观组织形貌。结果表明,脉冲电流处理后,在钛板材试样中形成细小的等轴再结晶晶粒和片层组织共存的组合组织。由于晶粒的细化和片层组织的出现,使得脉冲电流处理试样的强度明显高于普通退火试样的,最大相差100MPa。在屈服强度和抗拉强度大幅度提高的同时,脉冲电流处理试样仍然保持良好的塑性,具有更好的强度和韧性。脉冲电流是改善冷轧钛板力学性能的一种有效方法。 Specimens cut from the cold-rolled commercially pure (CP) Ti sheet were treated by high density electropulsing (the maximum current density 7.22 kA/mm2, pulse period 110 las). The deformation behaviors of the CP Ti specimens at different states were determined by the uniaxial tensile test. The microstructure morphologies were observed by the optical microscopy. The results show that the electropulsing induced formation of f'me equal-axial grains and lamellar microstructures, which leads to the strength of the electropulsed CP Ti higher than that of the conventional annealed CP Ti. After electropulsing, the tensile strength and yield strength are increased by 100 MPa. And the electropulsed CP Ti has a good plasticity. The experimental results demonstrate that the electropulsing provides an effective approach to enhance the strength of cold-rolled CP Ti sheet and retain the required high ductility.
作者 宋辉 王忠金
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1350-1355,共6页 中国有色金属学报(英文版)
基金 Project (50875061) supported by the National Natural Science Foundation of China
关键词 钛板 脉冲电流 晶粒细化 强度 Ti sheet electropulsing treatment grain refinement strength
  • 相关文献

参考文献4

二级参考文献17

共引文献40

同被引文献47

  • 1宋辉,王忠金,高铁军.Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet[J].中国有色金属学会会刊:英文版,2007,17(1):87-92. 被引量:15
  • 2田昊洋,唐国翌,丁飞,徐卓辉,姜雁斌.镁合金丝材的电致塑性拉拔研究[J].有色金属,2007,59(2):10-13. 被引量:22
  • 3BOYER R R. An overview on the use of titanium in the aerospace industry [J]. Materials Science and Engineering A, 1996, 213(1-2): 103-114.
  • 4YAMADA M. An overview on the development of titanium alloys for non-aerospace application in Japan [J]. Materials Science and Engineering A, 1996, 213(1-2): 8-15.
  • 5PRAKASH D G L, DING R, MOAT R J, JONES I, WITHERS P J, FONSECA J Q D, PREUSS M. Deformation twinning in Ti-6Al-4V during low strain rate deformation to moderate strains at room temperature [J]. Materials Science and Engineering A, 2010, 527(21-22): 5734-5744.
  • 6HE D, ZHU J C, ZAEFFERER S, RAABE D, LIU Y, LAI Z L, YANG X W. Influences of deformation strain, strain rate and cooling rate on the Burgers orientation relationship and variants morphology during β→α phase transformation in a near a titanium alloy [J].Materials Science and Engineering A, 2012, 549(6): 20-29.
  • 7CHICHILI D R, RAMESH K T, HEMKER K J. The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling [J]. Acta Materialia, 1998, 46(3): 1025-1043.
  • 8ZENG Z, JONSSON S, ROVEN H J. The effects of deformation conditions on microstructure and texture of commercially pure Ti [J]. Acta Materialia, 2009, 57(19): 5822-5833.
  • 9ZAEFFERER S. A study of active deformation systems in titanium alloys: Dependence on alloy composition and correlation with deformation texture [J]. Materials Science and Engineering A, 2003, 344(1-2): 20-30.
  • 10GURAO N P, KAPOOR R, SUWAS S. Deformation behaviour of commercially pure titanium at extreme strain rates [J]. Acta Materialia, 2011, 59(9): 3431-3446.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部