期刊文献+

没有(AR)条件的一类二阶Hamilton系统的同宿解 被引量:2

Homoclinic Solutions for A Class of the Second Order Hamiltonian System without(AR) Condition
下载PDF
导出
摘要 利用标准版本的山路定理证明了二阶Hamilton系统:q+Vq(t,q)=f(t)在一些弱于(AR)条件的假设下,存在非平凡的同宿解.一个同宿轨道可以作为一序列二阶微分方程的2kT周期解的极限来得到. In this paper, the existence of homoclinic solutions of the second order Hamihonian system . q + Vq(t,q) =f(t) (HS) is considered using a standard version of the mountain pass theorem, some assumptions are given which is weaker than the (AR) condition. A homoclinic orbit is obtained as a limit of 2kT-periodic solutions of a certain sequence of the second order differential equations.
作者 闫训甜
出处 《曲阜师范大学学报(自然科学版)》 CAS 2012年第3期25-29,共5页 Journal of Qufu Normal University(Natural Science)
关键词 HAMILTON系统 同宿解 山路定理 临界点 hamiltonian system homoclinic solution mountain pass theorem critical point.
  • 相关文献

参考文献6

  • 1Izydorek M, Janczewska J. Homoclinic solutions for a class of the second order Hamiltonian systems [ J ]. J Differential Equa- tions, 2005, 219(2): 375-389.
  • 2Lv Y, Tang C. Existence of even homoelinic orbits for second-order Hamiltonian systems[ J ]. Nonlinear Anal, 2007, 67: 2189- 2198.
  • 3Mawhin J, Willem M. Critical point theory and Hamihonian systems[ M ]. Appl Math Sci, New York: Springer-Verlag, 1989.
  • 4Rabinowitz P H. Homoclinic orbits for a class of Hamiltonian systems[J]. Proc Roy Soc, Edinburgh Sect, 1990, 114: 33-38.
  • 5Wan L. Existence of homoclinic orbits for second order Hamiltonian systems without (AR) condition[ J]. Differential Equations Applications, 2009, 1 : 491-496.
  • 6Zhang Z, Yuan R. Homoclinic solutions for some second order non-autonomous Hamiltonian systems without the globally super- quadratic condition[ J]. Nonlinear Anal, 2010, 72: 1809-181.

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部