期刊文献+

基于Root-MUSIC和支持向量机的间谐波参数估计 被引量:2

Interharmonics Estimation Based on Root-MUSIC and SVM Algorithm
下载PDF
导出
摘要 为准确地检测电力系统中间谐波信号的参数,提出基于求根多重信号分类法(Root-MUSIC)和支持向量机(SVM)的间谐波参数估计方法。首先对采样数据构成的自相关矩阵进行特征分解,利用信号子空间和噪声子空间的正交性求得谐波和间谐波的个数及频率;然后通过支持向量机算法对间谐波信号的幅值和相位进行回归估计。Matlab仿真结果表明:该算法在低信噪比下频率估计准确,利用支持向量机在处理小样本数据上的优势,有效的提高了幅值和相位估计的精度。 In order to accurately detect the parameters of the interharmonics in power system, an algorithm based on root-multiple signal classification (Root-MUSIC) and support vector machine (SVM) is proposed. First, eigenvalue decomposition is used for the autocorrelation of matrix constructed by sampling data, and the numbers and frequencies of the interharmonics are obtained using the orthogonality between signal subspace and noise subspace; then SVM is used to estimate the amplitudes and phases of the interharmonics. Matlab simulation results show the accuracy of this algorithm for frequency estimation in the condition of low SNR. Benefiting from SVM in processing small sample data, the accuracy of amplitudes and phases estimating is improved effectively.
出处 《电测与仪表》 北大核心 2012年第6期15-18,76,共5页 Electrical Measurement & Instrumentation
关键词 间谐波 求根多重信号分类法(Root-MUSIC) 支持向量机(SVM) 参数估计 interharmonics, root-MUSIC algorithm, SVM, parameters estimation
  • 相关文献

参考文献8

二级参考文献67

共引文献377

同被引文献38

  • 1肖建平,李生虎,吴可汗,何怡刚.一种新的基于神经网络的电力系统谐波检测方法研究[J].电工技术学报,2013,28(S2):345-348. 被引量:18
  • 2占勇,丁屹峰,程浩忠,曾德君.电力系统谐波分析的稳健支持向量机方法研究[J].中国电机工程学报,2004,24(12):43-47. 被引量:60
  • 3戴先中,唐统一.周期信号谐波分析的一种新方法[J].仪器仪表学报,1989,10(3):248-255. 被引量:205
  • 4程志友,梁栋,韦穗,李令冬.基于S变换的动态间谐波检测方法研究[J].电测与仪表,2007,44(3):5-8. 被引量:12
  • 5倪林.小波变换与图像处理[M].舍肥:中国科学技术大学出版社,2010.
  • 6Salvatore L, Trotta A. Flat - top windows for PWM waveform process- ing via DFT[ J]. The Proceedings of the Institution of Electrical Engi- neers, 1988, 135(6) : 346-361.
  • 7Reljin I, Reljin B, Papi cV. Extremely flat-top windows for harmonic analysis[ J ]. IEEE Transactions on Instrumentation and Measure- ment, 2007, 56(3): 1025-1041.
  • 8Jain V K, Collins W L, Davis D C. High-accuracy analog measure- ments via interpolated FFT [ J ]. IEEE Trans on Instrumentation and Measurement, 1979, 28(2) : 113-122.
  • 9Grandke T. Interpolation algorithms for discrete Fourier transforms of weighted signals[ J]. IEEE Trans on, Instrumentation and Measure- ment, 1983, 32(2) : 350-355,.
  • 10Weon-Ki Yoon, Michael J. Devaney. Power Measurement Using the Wavelet Transform [ J ]. IEEE Instrumentation and Measurement, 1998, 47(5) : 1205-1210.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部