期刊文献+

磁流变阻尼器的分数阶模型及其减振系统分析 被引量:5

Fractional Calculus Modeling of the Magnetorheological Damper and the Analysis of its Damping System
下载PDF
导出
摘要 研制了一种复合式磁流变阻尼器,它主要由橡胶弹簧、磁流变阻尼两部分组成,其性能兼具橡胶弹簧减振和磁流变阻尼减振的优点。引入了分数阶微积分理论,建立了复合阻尼器的分数阶Zener理论模型,并探讨了在该模型下的粘弹性。为验证该模型的有效性,将分数阶微积分应用到磁流变振动台系统建模上,建立了分数阶系统模型,并给出了分数阶系统传递函数描述,求出了位移函数。实验表明,减振系统的分数阶模型与实验数据能够较好的吻合,从而证明了分数阶模型在磁流变阻尼器的减振模型研究上的有效性。 The combined magnetorheological damper developed in the paper is composed of rubber spring,magnetorheological damper,which inherits the damping merits of the rubber spring and the magnetorheological damper.Here the factional-order constitutive equation was introduced to study the characteristics of the combined damper according to its viscoelasticity.A fractional Zener model for the damper is built,and its viscoelasticity is analyzed.In order to verify the effectiveness of the fractional Zener model,the fractional-order system model of magnetorheological vibrant platform was set up and the transfer function representation of fractional-order system was given,and the function of displacement was also obtained.Through the experiments it was found that the sampling data can fit the fractional-order system model well.It is indicated the fractional-order constitutive equation and the transfer function are feasible and effective for investigation of magnetorheological vibrant device.
机构地区 福建工程学院
出处 《机械设计与制造》 北大核心 2012年第7期219-221,共3页 Machinery Design & Manufacture
基金 福建省自然科学基金(2011J05119) 福建省教育厅资助项目(JA11191) 福建工程学院科研启动项目(GY-Z10049)
关键词 分数阶微积分 磁流变液 分数阶系统 系统建模 Fractional Calculus Magnetorheological Fluid Fractional-Order Constitutive Equation Fractional-Order System System Modeling
  • 相关文献

参考文献9

  • 1STANWAY R S J L, STEVENS N G.Non-linear modeling of an electrorh- eologic al vibration damper [ J ] .Electrostatic s, 1987 ( 20 ) : 167-184.
  • 2周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150. 被引量:91
  • 3GAMOTO D R F F E.Dynamic mechanical studies of electrorheologieal materials: moderate frequencies[ J ].Rheology, 1991,35 ( 3 ) : 399--425.
  • 4C F.Relaxation and Retardation Function of the Maxwell Moded with Fractional Derivatives [ J ].Reological Acta, 1991,39( 1 ): 151-159.
  • 5I SONG D Y,J T Q.Study on the constitutive equation with fractional derivative for viscoelastic fluids - modified Jeffreys model and its applic- ation[J].Rhelo Acta, 1998(37):512 -517.
  • 6M.ALCOUTLABI J J M-V.Application of fractional calculus to viscoelas- tic behavior modelling and to the physical ageing phenomenon in glassy amorphous polymers[ J ].Polymer, 1998,39(25 ): 6269-77.
  • 7李卓,徐秉业.粘弹性分数阶导数模型的等效粘性阻尼系统[J].清华大学学报(自然科学版),2000,40(11):27-29. 被引量:10
  • 8王振滨,曹广益,朱新坚.分数微积分在系统建模中的应用[J].上海交通大学学报,2004,38(5):802-805. 被引量:4
  • 9王振滨,曹广益.分数微积分的两种系统建模方法[J].系统仿真学报,2004,16(4):810-812. 被引量:19

二级参考文献21

  • 1池田 川田 小口.分数A微分アクティブマスダンパによる柔造物の振又朴 [D]..日本C械学会文集(C)[C].,2001,2798-2805.67-661.
  • 2[1]Soong T T,Spencer Jr.B F.Active,semi -active and hybrid control of structures[ A].12th World Conference on Earthquake Engineering [C],Aucklang,New Zealand,2002.paper 2834.
  • 3[2]Xu Y L and Qu W L.Seismic response control of frame structures using magnetorheological/electrorheological dampers [ J ],Earthquake Engineering and Structural Dynamics,2000,29:557 -575.
  • 4[3]Yang G,Spencer Jr.B F,Calson J D and Sain M K.Large -scale MRfluid dampers: dynamic performance consideration [ A ].Proceedings of International Conference on Advances in Structure Dynamic[ C].Vol; 1,Hong Kong,China,2000,341 -348.
  • 5[4]Stanway R,Sproston J L and Stevens N G.Non -linear modeling of an electro- rheological vibration damper [ J ].J.Eletrostatics,1987,20:167 - 184.
  • 6[5]Gamota D R and Filisko F E.Dynamic mechanical studies of electrorheological materials: moderate frequencies [ J ],J.Rheology,1991,35:199- 425.
  • 7[6]Spencer Jr.B F,Dyke S J,Sain M K and Carlson J D.Phenomenological model for magnetorheologieal damper [ J],J.Engrg.Mech.,ASCE,1997,123: 230 -238.
  • 8[7]Chang C C and Roschke P.Neural network modeling of a magnetorheological damper [ J ],J.Intelligent Material System and Structure,1998,9:755 - 764.
  • 9[8]Choi S B,Lee S K and Park Y P.A hysteresis model for the field - dependent damping force of a magnetorheological damper [ J],J.Sound Vib.,2001,245: 375 - 383.
  • 10[9]Dahl P R.Solid friction damping of mechanical vibrations [J],AIAA J.,1976,14:1675 - 1682.

共引文献115

同被引文献52

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部