期刊文献+

On reducibility of a class of nonlinear quasi-periodic systems with small perturbational parameters near equilibrium 被引量:2

一类具有小扰动参数的非线性拟周期系统在平衡点附近的可约化性(英文)
下载PDF
导出
摘要 Consider the reducibility of a class of nonlinear quasi-periodic systems with multiple eigenvalues under perturbational hypothesis in the neighborhood of equilibrium. That is, consider the following system x = (A + εQ( t) )x + eg(t) + h(x, t), where A is a constant matrix with multiple eigenvalues; h = O(x2) (x-4)) ; and h(x, t), Q(t), and g(t) are analytic quasi-periodic with respect to t with the same frequencies. Under suitable hypotheses of non-resonance conditions and non-degeneracy conditions, for most sufficiently small ε, the system can be reducible to a nonlinear quasi-periodic system with an equilibrium point by means of a quasi-periodic transformation. 考虑一类有重特征值的非线性拟周期系统在小扰动下平衡点附近的可约化性问题,也就是研究x=(A+εQ(t))x+εg(t)+h(x,t),其中A可以是具有重特征值的常数矩阵;h=O(x2)(x→0);h(x,t),Q(t)和g(t)关于t是解析拟周期的,且有相同的频率.在某些非共振条件及非退化条件下,对充分小的大多数ε,通过仿线性拟周期变换,系统可约化为具有平衡点的非线性拟周期系统.
作者 李佳 朱春鹏
出处 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期256-260,共5页 东南大学学报(英文版)
关键词 QUASI-PERIODIC REDUCIBLE non-resonance condition non-degeneracy condition KAM iteration 拟周期 可约化性 非共振条件 非退化条件 KAM迭代
  • 相关文献

参考文献9

  • 1Johnson R A, Sell G R. Smoothness of spectral subbundl- es and reducibility of quasiperodic linear differential sys- tems [J]. Journal of Differential Equations, 1981, 41 (2): 262-288.
  • 2Jorba A, Simo C. On the reducibility of linear differential equations with quasiperiodic coefficients [ J]. Journal of Differential Equations, 1992, 98(1) : 111 - 124.
  • 3Xu Junxiang. On the reducibility of a class of linear dif- ferential equations with quasiperiodic coefficients [ J]. Mathematika, 1999, 46(2): 443-451.
  • 4Eliasson L H. Floquet solutions for the 1-dimensional qua- si-periodic Schr6dinger equation [ J]. Communications in Mathematical Physics, 1992, 146(3) : 447 - 482.
  • 5Her Hailong, You Jiangong. Full measure reducibility for generic one-parameter family of quasi-periodic linear sys- tems [ J]. Journal of Dynamics and Differential Equa- tions, 2008, 20(4): 831-866.
  • 6Jorba A, Simo C. On quasi-periodic perturbations of el- liptic equilibrium points [ J]. SlAM Journal on Mathemat- ical Analysis, 1996, 27(6) : 1704 - 1737.
  • 7Wang Xiaocai, Xu Junxiang. On the reducibility of a class of nonlinear quasi-periodic system with small pertur- bation parameter near zero equilibrium point [J]. Nonlin- ear Analysis, 2008, 69(7) : 2318 - 2329.
  • 8Bogoljubov N N, Mitropoliski J A, Samoilenko A M. Methods of accelerated convergence in nonlinear mechan- ics [M]. New York: Springer, 1976.
  • 9Whitney H. Analytical extensions of differentiable func- tions defined in closed sets [ J]. Transactions of the Amer- ican Mathematical Society, 1934, 36(2): 63 -89.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部