期刊文献+

含两个未知边界的抛物型方程反问题稳定数值算法 被引量:1

A Stable Numerical Algorithm for an Inverse Parabolic Problem with Two Unknown Boundaries
下载PDF
导出
摘要 在物理学中模拟均匀的多孔介质流时会遇到一类一维抛物型方程反问题,该问题由一个含两未知边界条件的抛物型方程以及在某指定内点上测量得到的特定数据条件所构成。为了能够更好地求解该类反问题,本文首先证明解的唯一性,然后给出其离散后的有限差分格式以及该格式下的数值解的稳定性条件,并通过切比雪夫多项式逼近未知函数,利用最小二乘法解出未知项的系数,最后给出数值试验。 A one-dimensional inverse parabolic problem can be encounter when we research simulation of homogeneous porous medium flow in physics. The problem consists of a parabolic e- quation with two conditions which are unknown at the boundaries and a condition which is deter- mined from an over-specified data measured at an interior point. In order to solve this problem, uniqueness of the solution should be proved first, then the problem is discretized and a finite dif- ference scheme is given. Stability conditions for numerical solution to inverse problem are stated. A set of Chebyshev polynomials are approximate to the unknown function and the unknown set of expansion coefficients in unknown function are determined from the Least-squares method. In the last section the paper gives some numerical examples.
作者 汪平
出处 《江汉大学学报(自然科学版)》 2012年第3期5-8,共4页 Journal of Jianghan University:Natural Science Edition
关键词 抛物型方程反问题 切比雪夫多项式 最小二乘法 有限差分格式 稳定性 inverse parabolic problem chebyshev polynomials least-squares method difference scheme stability
  • 相关文献

参考文献5

  • 1Shidfar A,Karamali G R. An inverse problem for a nonlinear diffusion equation nonlinear analysics [.ll. Theo Meth Appl, 1997, 28(4) :589-593.
  • 2Shidfar A, Karamali G R. Numerical solution of inverse heat conduction problem with nonstationary measure- ments [ J ]. Appl Math Comput, 2005,168 ( 1 ) : 540-548.
  • 3Shidfar A,Karamali G R,Damirchi J. An inverse heat conduction problem with a nonlinear source term Nonlin ear analysis [ J ]. Theo Meth Appl, 2006,65 : 615- 621.
  • 4Shidfar A,Damirchi J ,Reihani P. An stable numerical algorithm for identifying the solution of an inverse problem [ J ]. Appl Math Comput, 2007,190 : 231-236.
  • 5Frankel J I. Residual-minimization least-squares method for inverse heat conduction [J]. Comp Math Appl, 1996,32(4) : 117-130.

同被引文献4

  • 1郭定辉.偏微分方程基本教程[M].北京:北京航空航天大学出版社,2012:112-113.
  • 2LIU J B ,TANG J. Variational iteration method for solving an inverse parabolic equation[J]. Physics Letter A,2008,372: 3569 - 3572.
  • 3CANNON J R. Determination of an unknown coefficient in a parabolic differential equation[ J]. Duke Math. J 313 -323.
  • 4DOUGLAS J Jr,JONES B F. The determination of a coefficient in a parabolic differential equation[ J]. Part II approximation, J. Math. Meeh, 1962,11:919 - 926. 1963,30: Numerical.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部