期刊文献+

非线性与线性典型相关分析的对比实验 被引量:1

The Contrast Experiment of Canonical Correlation Analysis Between Nonlinear and Linear
下载PDF
导出
摘要 线性典型相关分析揭示了两组变量间潜在的线性关系,但实际应用中,变量之间往往还潜在着非线性关系。主要研究非线性典型相关分析算法,揭示变量间潜在的非线性关系,并通过非线性与线性典型相关分析对比实验,验证其优良性能。 Linear canonical correlation analysis reveals potential linear relationship between two groups of variables, but in practical application, there is also potential nonlinear relationship between variables. The paper studies the nonlinear canonical correlation analysis algorithm, re- veals variables' potential nonlinear relationships, and verifies their good performance through the contrast experiment.
出处 《江汉大学学报(自然科学版)》 2012年第3期38-40,共3页 Journal of Jianghan University:Natural Science Edition
基金 武汉市科技局科技攻关计划项目(200860423202)
关键词 典型相关分析 非线性 核函数 canonical correlation analysis nonlinear kemel function
  • 相关文献

参考文献9

二级参考文献42

  • 1陈建宝,胡光涛,赵志云.大学生成绩比较分析[J].云南大学学报(自然科学版),1995,17(2):132-135. 被引量:3
  • 2张荣 张卧波 等.大学生入学和在校成绩的相关分析[J].航海教育研究,1996,15(2):14-14.
  • 3Müller K-R Smola A Rtsch G et al In: Schlkopf B Burges C J C Smola A J. Eds.Predicting time Series with Support vector machines[A].In: Schlkopf B, Burges C J C, Smola A J. Eds.Advances in Kernel Methods-Support Vector Learning[C].MA:MIT Press,1999.243-254.
  • 4Müller K-R Mika S Rtsch G et al.An Introduction to Kernel-Based Learning Algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201.
  • 5Schlkopf B Smola A Müller K-R.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation,1998,10:1299-1319.
  • 6Cristianini N, Shawe-Taylor J. An Introduction to Support Vector machines[ M]. Cambridge, UK : Cambridge University Press, 2000.
  • 7Muller K-R, Mika S, Ratsch G, et al. An Introduction to Kernel-Based Learning Algorithms[J]. IEEE Transactions on Neural Networks, 2001,12(2) : 181 - 201.
  • 8Vapnik V N. The Nature of Statistical Learning Theory[M]. NY. Springer, 1995.
  • 9Scholkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the Support of a High-dimensional Distribution[ R]. Technical Report MSR-TR-99-87, Microsoft Research, 1999.
  • 10Tax D, Duin R. Data Domain Description by Support Vectors[A]. In. Verleysen M.Ed. D. Proc. ESANN[C]. Brussels:Facto Press, 1999, 251 - 256.

共引文献58

同被引文献11

  • 1居丽丽,郭品文.基于NLCCA的中国夏季降水与东亚夏季风关系的探讨[J].暴雨灾害,2007,26(3):205-210. 被引量:4
  • 2GUINEHUT S, TRAON P Y, LARNICOL G, et.al. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields-a first approach based on simulated observations[J]. Journal of Marine Systems, 2004, 46(1):85-98.
  • 3WILLIS J K, ROEMMICH D, CORNUELLE B. Combining altimetric height with broadscale profile da- ta to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability [J]. Journal of Geophysical Research, 2003, 108(C9) : 3292-3304.
  • 4ARMIN K, Detecting processes contributing to intera- nnual halosteric and thermosteric sea leavel variability [J]. Journal of Climate, 2014, 27(6): 2417-2426.
  • 5RICHARD E T,SUSUMU T.Steric sea level trends in the Northeast Pacific Ocean: possible evidence of glob- al sea level rise[J]. Journal of Climate, 1989, 2 (2): 542-553.
  • 6HSIEH W W. Nonlinear canonical correlation analysis of the tropical Pacific climate variability using a neural network approac[J]. Journal of Climate, 2001, 14 (6) : 2528-2539.
  • 7CARTON J A,CHEPURIN G,CAO X, et al. A sim- ple ocean data assimilation analysis of the global upper ocean 1950-1995, part 1.. methodology [J]. Journal of Physical Oceanography, 2000,30 (2) : 294-309.
  • 8CARTON J A,CHEPURIN G, CAO X. A simple o- cean data assimilation analysis of the global upper o- cean 1950-1995, part 2 ; results [J].Journal of Physical Oceanography, 2000,30(2) : 311-326.
  • 9郭品文,姜玥宏,王群.热带夏季风对ENSO的非线性响应[J].南京气象学院学报,2008,31(6):774-781. 被引量:3
  • 10韦莹莹,吴云荣,徐良谋,张志刚,王星之.热带太平洋SSTA与太平洋北美区500hPa高度场的非线性关系[J].气象科学,2009,29(2):199-207. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部