摘要
讨论有限域上指定迹的本原元的存在性,利用指数和估计的方法得出相应的结论:当q≥2,n≥29时,存在ξ∈GF(qn)满足ξ+ξ-1是本原元素,同时对任意指定的元素a,b∈F*q,有Tr(ξ)=a,Tr(ξ-1)=b.
In this paper, we discuss the existence of the primitive elements of appointed trace over finite field. Based on exponents and estimation, we conclude that, when q ≥2, n ≥29 ,ξ∈GF(qn) can prove that ξ + ξ- 1 is a primitive element, meanwhile, Tr ( ξ ) = a, Tr ( ξ- 1 ) = b exists for any pair of prescribed element a,b∈Fqn.
出处
《西安文理学院学报(自然科学版)》
2012年第3期15-19,共5页
Journal of Xi’an University(Natural Science Edition)
关键词
本原元
有限域
特征
指数和
primitive elements
finite fields
characteristics
exponential sums