期刊文献+

指定迹的本原元素

On the Primitive Elements of Appointed Trace
下载PDF
导出
摘要 讨论有限域上指定迹的本原元的存在性,利用指数和估计的方法得出相应的结论:当q≥2,n≥29时,存在ξ∈GF(qn)满足ξ+ξ-1是本原元素,同时对任意指定的元素a,b∈F*q,有Tr(ξ)=a,Tr(ξ-1)=b. In this paper, we discuss the existence of the primitive elements of appointed trace over finite field. Based on exponents and estimation, we conclude that, when q ≥2, n ≥29 ,ξ∈GF(qn) can prove that ξ + ξ- 1 is a primitive element, meanwhile, Tr ( ξ ) = a, Tr ( ξ- 1 ) = b exists for any pair of prescribed element a,b∈Fqn.
作者 王培培
出处 《西安文理学院学报(自然科学版)》 2012年第3期15-19,共5页 Journal of Xi’an University(Natural Science Edition)
关键词 本原元 有限域 特征 指数和 primitive elements finite fields characteristics exponential sums
  • 相关文献

参考文献14

  • 1LID1 R, NIEDERREITER H. Finite fields[ M]. Reading, Mass; Addison- Wesley ,1983.
  • 2COHEN S D. Primitive element and polynomial with arbitrary trace [ J ]. Discrete Math, 1990,2:1 -7.
  • 3JUNGNICKEL D, VANSTONE S A. On primitive polynomials over finite fields [ J ]. J. Algebra, 2002,124:337 - 353.
  • 4MORENO O. On primitive elements of trace equal to 1 in [J]. Discrete Math, 1982,41:53 -56.
  • 5LENSTRA H W Jr, SCHOOF R J. Primitive normal bases for finite fields[ J]. Discrete Math, 1987,48:217 -231.
  • 6GALOIS E. Surla theorie des numbers[J]. Bull. Sci. Math. de M. Ferussac, 1830, 13:428 -435.
  • 7LENSTRA H W Jr, SCHOOF R J. Primitive normal bases for finite fields[J]. Math. Comp. 1987,48:217 -231.
  • 8CHOU W S, COHEN S D. Primitive elements with zero traces [ J ]. Finite Fields and Their Application, 2001,7:125 - 141.
  • 9HE L, HAN W. The study of primitive elements mid primitive polynomials over finite fields [ J ]. Math. comp. ,2003,55:1 -3.
  • 10TIAN T, WENFENG Q. Primitive normal element and its inverse in finite fields [ J ]. Acta Mathematica Siniea, 2006, 49,3:657 - 668.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部