期刊文献+

一类脉冲L-V系统的周期解和全局渐近性质 被引量:2

The Periodic Solutions and Globally Asymptotic Properties of L-V System with Impulsive Effects
下载PDF
导出
摘要 研究了一类具有脉冲的周期L-V系统,利用脉冲微分方程的比较原理、Floquet理论及分析技巧,分析了系统周期解的存在性及系统解的全局渐近性质.并将所得到的一般结果应用于一类捕食-被捕食系统,获得了该系统正周期解的存在唯一及全局吸引的条件,进一步讨论了系统中种群灭绝的有关性质,给出一个实例进行数值模拟,阐明了所获得的理论结果。 In this paper, a class of periodic L-V impulsive system is studied. The comparison principle of impulsive differential equation, Floquet theory and some analysis techniques are used to analyse the exist- ence of the system periodic solution and global asymptotic properties of the system. Furthermore, the gen- eral results obtained are applied to a predator-prey system, so as to obtain the existence and uniqueness of positive periodic solution to the system. Some relevant nature of extinction of population species is further discussed. Also, this paper presents a practical example to carry out the numerical simulation and to illustrate the obtained theoretical results.
出处 《西安理工大学学报》 CAS 北大核心 2012年第2期235-239,共5页 Journal of Xi'an University of Technology
基金 国家自然科学基金资助项目(10971124 61070189)
关键词 周期L-V系统 脉冲 渐近性质 周期解 periodic L-V system impulsive effect asymptotic properties periodic solution
  • 相关文献

参考文献7

  • 1Tineo A. Asymptotic behavior of an invading species [ J ]. Nonlinear Analysis, 2008, 9: 1-8.
  • 2Muroya Y. Persistence and global stability in discrete mod- els of Lotka-Volterra type [ J ]. Journal of Mathematic Analy- sis Application, 2007, 330: 24-33.
  • 3刘海英,罗吉贵,赵晓华.ON CRITERIA FOR GLOBAL STABILITY OF N-DIMENSIONAL LOTKA-VOLTERRA SYSTEMS[J].Annals of Differential Equations,2003,19(3):343-351. 被引量:1
  • 4Wang Y. Global asymptotic stability of Lotka-Voherra com- petition reaction-diffusion system with time delays [ J ]. Mathematical and Computer Modelling, 2011, 53 (1-2): 337-346.
  • 5Liu X, Chen L. Complex dynamics of holling type II Lotka- Volterra predator-prey system with impulsive perturbations on the predator[ J]. Chaos, Solitons & Fractals, 2003, 16. 311-320.
  • 6Liu X, Ballinger G. Existence and continuability of solu- tions for differential equations with delays and state-de- pendent impulses [ J ]. Nonlinear Analysis, 2002, 51 : 33-647.
  • 7Bainov D D, Simeonov P S. Impulsive differential equa- tion: periodic solutions and applications [ M ]. London: Longman Scientific & Technical, 1995.

同被引文献18

  • 1黄振坤,陈凤德.具有反馈控制的两种群竞争系统的概周期解[J].生物数学学报,2005,20(1):28-32. 被引量:3
  • 2惠静,陈兰荪.脉冲时滞微分方程的周期性和稳定性研究[J].数学学报(中文版),2005,48(6):1137-1144. 被引量:6
  • 3丁孝全,程述汉.具反馈控制的时滞阶段结构种群模型的稳定性[J].生物数学学报,2006,21(2):225-232. 被引量:16
  • 4程永宽,窦斗.竞争系统的几乎自守解(英文)[J].中国科学技术大学学报,2006,36(9):956-959. 被引量:1
  • 5CANAN C. Stability and HopI bifurcation in a delayed ratio dependent Holling-Tanner type model[J]. Applied Mathematics and Computation, 2015, 255: 228-237.
  • 6ZHANG Zizhen, YANG Huizhong, FUMing. Hopl bi- furcation in a predator-prey system with Holling type Ill functional response and time delays[J]. Journal of Com- putational and Applied Mathematics, 2014, 44(1): 337- 356.
  • 7PALLAV J P, PRASHANTA K M, KAUSHIK K L. A delayed ratio-dependent predator-prey model of inter- acting populations with Holling type III functional re- sponse[J]. Nonlinear Dynamics, 2014, 76(1) 201-220.
  • 8ABRAMS P A, GINZBURG L R. The nature of preda- tion: prey dependent, ratio dependent or neither[J]. Trends in Ecology & Evolution, 2000, 15(8): 337-341.
  • 9YANG Wensheng. Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response [J]. Nonlinear Analysis, 2013, 14(3): 1323-1330.
  • 10SHARMA S, SAMANTA G P. A Leslie-Gower preda- tor-prey model with disease in prey incorporating a prey refuge[J]. Chaos, Solitons & Fractals, 2015, 70: 69- 84.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部