期刊文献+

Mn_(0.6)Zn_(0.4)Fe_2O_4磁性亚微球的可控合成及磁性能 被引量:1

Controlled Fabrication of Mn_(0.6)Zn_(0.4)Fe_2O_4 Magnetic Submicrospheres and Their Magnetic Properties
下载PDF
导出
摘要 采用溶剂热法制备了单分散Mn0.6Zn0.4Fe2O4磁性亚微米球,研究了反应工艺参数对磁性亚微米球结构形貌、直径和静磁性能的影响规律.研究发现,随着反应时间的延长,体系中的金属离子首先水解沉淀,形成羟基氧化铁及Mn,Zn氢氧化物,然后脱水转化为Mn0.6Zn0.4Fe2O4球形纳米粒子,这些纳米粒子发生团聚,形成结构疏松、大小不均匀的亚微米粒子,最后通过Ostwald熟化过程,形成致密的单分散亚微米球.降低反应溶液的pH值、增加乙二醇或聚乙二醇的用量,均会使亚微球的直径增大,并可在150~500 nm范围内调控微球的粒径;但组成磁性亚微球的纳米粒子的粒径逐渐减小,产物的饱和磁化强度增大,矫顽力和剩磁减小. Monodispersed manganese-zinc ferrite(Mn0.6Zn0.4Fe2O4) submicrospheres were synthesized by a simple solvothermal method.The influences of reaction parameters on the structure,morphology,diameter and magnetic properties of the Mn0.6Zn0.4Fe2O4 submicrospheres were investigated.The results showed that metal ions were first hydrolyzed to form ferric hydroxide,manganic hydroxide and zinc hydroxide,which then dehydrated to form Mn0.6Zn0.4Fe2O4 nanoparticles.These Mn0.6Zn0.4Fe2O4 nanoparticles first agglomerated to produce homogeneous submicrospheres with loose structure,and finally evolved into compact monodispersed submicrospheres through Ostwald ripening.Increasing the amount of ethylene glycol or polyethylene glycol or decreasing pH value,the diameter of the submicrospheres could be controlled in a range of 150—500 nm,while the size of nanoparticle which composed the submicrospheres decreased,consequently,saturation magnetization increased,remanence and coercivity decreased.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第7期1376-1382,共7页 Chemical Journal of Chinese Universities
基金 武器装备预研基金重点项目(批准号:9140A31030110JB3403) 武汉理工大学自主创新研究基金项目(批准号:2012-Ia-025) 广东省产学研项目(批准号:2010B090400091)资助
关键词 锰锌铁氧体 磁性亚微米球 磁性能 Manganese-zinc ferrite Magnetic submicrosphere Magnetic property
  • 相关文献

参考文献20

  • 1ZHAO Tao, SUN Rong, LENG Jing, DU Ru-Xu, ZHANG Zhi-Jun. Prog. Chem. [J], 2007, 19(11), 1703-1709.
  • 2MA Rui-Ting, ZHAO Hai-Tao, ZHANG Gang. Chem. J. Chinese Universities [J], 2010, 31 (10) : 1924- 1928.
  • 3SUN Jie, LIU Jian-Hua, LI Song-Mei. J. Inorg. Mater. [J], 2005, 20(5), 1077-1082.
  • 4HUANG Xiao-Gu, CHEN Jiao, SONG Jie, WANG Li-Xi, ZHANG Qi-Tu. Chinese J. Inorg. Chem. [J], 2010, 26(9), 1556-1560.
  • 5GAN Zhi-Ping, GUAN Jian-Guo . Chem. J. Chinese Universities [ J ], 2005, 26 ( 11 ) : 1986-1989.
  • 6FanX. A., GuanJ. G., LiZ. Z., MouF. Z., TongG. X., WangW.. Eur. J. Inorg. Chem.[J], 2010, 3:419-426.
  • 7Rebolledo A. F. , Fuertes A. B. , Tartaj P.. Small[J] , 2008, 4(2) : 254-261.
  • 8MENG Xian-Feng, WANG Yun-Long, SHEN Xiang-Qian. Chem. J. Chinese Universities [J], 2011,32(8) : 1697-1702.
  • 9Darko M. , Miha D. , Andrej Z.. J. Eur. Ceram. Soe. [J] , 2001, 21(10-11) : 1945-1949.
  • 10Beji Z. , Hanini A. , Smiri L. S. , Gavard J. , Kacem K. , Villain F. , Greneche J. M. , Chau F. , Ammar S.. Chem. Mater. [J] , 2010, 22(19) : 5420-5429.

同被引文献28

  • 1朱启安,宋方平,陈万平,王树峰,孙旭峰,张琪.反相微乳液法合成钛酸钡纳米棒[J].高等学校化学学报,2006,27(9):1612-1614. 被引量:9
  • 2Yan L;Yang Y.D;Wang Z.G;Xing Z.P.;Li J.F.;Viehland D.查看详情[J],Journal of Materials Science2009(19):5080-5094.
  • 3Ma J;Hu J.M;Li Z;Nan C.W.查看详情[J],Advanced Materials2011(09):1062-1087.
  • 4Lee J.H;Fang L;Vlahos E;Ke X.L.查看详情[J],Nature2010954-958.
  • 5Israel C;Mathur N.D;Scott J.F.查看详情[J],Nature Materials200893-94.
  • 6Dong S.X;Cheng J.R;Li J.F;ViehlandD.查看详情[J],Applied Physics Letters2003(23):4812-4814.
  • 7Ramesh R;Spaldin N.查看详情[J],Nature Materials200721-29.
  • 8Spaldin N.A,Fiebig M. The Renaissance of Magnetoelectric Multiferroics[J].Science,2005,(5733):391-392.
  • 9Wang J;Neaton J.B;Zheng H;Ramesh R.查看详情[J],Science2003(5613):1719-1722.
  • 10Cheong S.W;Mostovoy M.查看详情[J],Nature Materials200713-20.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部