期刊文献+

均匀共沉淀法制备BaTiO_3-Ni_xZn_(1-x)Fe_2O_4核-壳粒子及其性能 被引量:4

Preparation and Characterization of BaTiO_3-Ni_xZn_(1-x)Fe_2O_4 Core-shell Particles by Homogeneous Coprecipitation
下载PDF
导出
摘要 以尿素为沉淀剂,在无后续热处理的情况下,采用均匀共沉淀法制备了BaTiO3-NixZn1-xFe2O4核-壳粒子.采用透射电子显微镜(TEM)、X射线衍射仪(XRD)、能谱仪(EDS)及振动样品磁强计(VSM)对BaTiO3-NixZn1-xFe2O4核-壳粒子的形貌、结构、成分和磁性能进行了表征.结果表明,制备的核-壳结构粒子中NixZn1-xFe2O4壳层在BaTiO3颗粒的表面包覆完整.通过控制共沉淀中NiCl2.6H2O与ZnCl2的摩尔比可以调控BaTiO3-NixZn1-xFe2O4核-壳粒子的磁性;加入的NiCl2.6H2O与ZnCl2摩尔比为7∶3时制得的核-壳粒子具有较好的磁性能,其饱和磁化强度和矫顽力分别为26.999 A.m2/kg和902.787 A/m. BaTiO3-NixZn1-xFe2O4 core-shell particles were prepared by plating NixZn1-xFe2O4 magnetic films on BaTiO3 via homogeneous coprecipitation with urea as the precipitator.The phase structure,morphology,particle size,shell thickness,chemical composition and magnetic performance of the core-shell particles were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),energy dispersive X-ray spectroscopy(EDS) and vibrating sample magnetometer(VSM),respectively.The results show that compact and continuous coatings of NixZn1-xFe2O4 are formed on the surface of the BaTiO3.The magnetic performance of BaTiO3-NixZn1-xFe2O4 core-shell particles could be controlled via regulating the molar ratio of NiCl2·6H2O to ZnCl2 added in the experiment.When the molar ratio of NiCl2·6H2O to ZnCl2 is 7∶ 3,the saturation magnetization(Ms) and the coercivity(Hc) of the as-sample are 26.999 A·m2/kg and 902.787 A/m,respectively.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第7期1389-1393,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:51001007)资助
关键词 均匀共沉淀 BaTiO3-NixZn1-xFe2O4 核-壳粒子 磁性能 Homogeneous coprecipitation BaTiO3-Ni^Znl_x Fe2 04 Core-shell particles Magnetic perform-ance
  • 相关文献

参考文献21

  • 1Eerenstein W. , Mathur N. D. , Scott J. F.. Nature[J], 2006, 422:759-765.
  • 2Devana R. S. , Chouguleb B. K.. J. Appl. Phys. [J] , 2007, 101(1) : 014109-1-014109-6.
  • 3Fiebig M.. J. Phys. D: Appl. Phys. [J], 2005, 38:R123-R152.
  • 4Nan C. W., Bichufin M. I., Dong S. X., Viehland D., Srinivasan G.. J. Appl. Phys. [J], 2008, 103(3) : 031101-1-031101-35.
  • 5Zheng H. , Wang J. , Lofland S. E. , Ma Z. , Mohaddes-Ardabili L. , Zhao T. , Salamanca-Riba L. , Shinde S. R. , Ogale S. B. , Bai F. , Viehland D. , Jia Y. , Schlom D. G. , Wuttig M. , Roytburd A. , Ramesh R.. Science[J], 2004, 303:661-665.
  • 6Srinivasan G. , Rasmussen E. T., Hayes R.. Phys. Rev. [J], 2003, 67(1) : 014418-1-014418-10.
  • 7Parvatheeswara Rao B. , Rao G. S. N. , Mahesh Kumar A. , Rao K. H, , Murthy Y. L. N. , Hong S. M. , Kim C. O. , Kim C. G.. J. Appl. Phys. [J], 2007, 101(12) : 123902-1-123902-4.
  • 8Zhao D. L. , Lv Q. , Shen Z. M.. J. Alloys Compd. [J], 2009, 480:634-638.
  • 9Buscaglia M. T., Buscaglia V. , Viviani M., Nanni P. , Hanuskova M.. J. Eur. Ceram. Soc. [J], 2000, 20(12) : 1997-2007.
  • 10Priya S. , Islam R. , Dong S. X. , Viehland D.. J. Electroeeram[J], 2007, 17:147-164.

同被引文献52

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部