期刊文献+

聚苯胺/介孔碳纳米线复合电极材料的制备和性能 被引量:11

Synthesis and Supercapacitance Performance of PANI/MCFs Materials
下载PDF
导出
摘要 以介孔碳纳米线为基体,通过电化学方法制备了新型聚苯胺/介孔碳纳米线(PANI/MCFs)复合材料,采用SEM和TEM等手段对样品的结构和形貌进行了表征.结果表明,聚苯胺均匀附在介孔碳纳米线表面,并填充到纳米线介孔孔道中.将复合材料组装成三电极体系超级电容器,用循环伏安、恒流充放电和交流阻抗等方法对材料的电化学性能进行了测试.结果显示,在1 mol/L H2SO4溶液中,复合材料的比电容达到391 F/g,其循环稳定性也得到显著提高. A composite material was prepared through the electrochemical polymerization of aniline in the pores or on the surface of mesoporous carbon nanofibers by an electrochemical polymerization method.The surface morphology and structure of the composite material were characterized by scanning electron microscope(SEM) and transmission electron microscope(TEM).The supercapacitance performance of the composite material was investigated by cyclic voltammetry(CV),galvanostatic charge-discharge and Nyquist impedance test with a three-electrode system in 1 mol/L H2SO4 solution.The specific capacitance of the composite material is as high as 391 F/g at a current density of 0.5 A/g in the potential range of-0.2—0.8 V.The cycling stability is much better than that of pure polyaniline.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第7期1540-1544,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21151002) 上海市浦江人才计划项目(批准号:09PJ1405700)资助
关键词 超级电容器 介孔碳纳米线 聚苯胺 复合电极材料 Supercapacitor Mesoporous carbon nanofibers Polyaniline Composite electrode material
  • 相关文献

参考文献1

二级参考文献23

  • 1[1]DOUG K, BRUNO K. Lithium polymer batteries development for large battery applications[A]. IEEE. Proceedings of the 38th Power Sources Conference[C]. Piscataway, NJ, USA:IEEE,1998,282-286.
  • 2[2]MCGEE K.Chemical LLC[N]. Press Release, 2001-05-14.
  • 3[3]DOEFF, MARCA M, EDMAN, et al. Transport properties of binary salt polymer electrolytes[J]. J Power Sources, 2000,89:227-231.
  • 4[4]THOMAS, KAREN, SLOOP, et al. Comparison of lithium polymer cell performance with unity and nonunity transference numbers[J]. J Power Sources, 2000,89:132-138.
  • 5[5]BURIEZ, OLIVER, HAN, et al. Performance limitations of polymer electrolytes based on ethylene oxide polymers[J]. J Power Sources, 2000,89:149-155.
  • 6[6]SHRIVER, DUWARD F, RATNER, et al. Monte Carlo Simulations of Polyelectrolytes: Solid State Ionics[M]. in press.
  • 7[7]HAN, YONG B., HOU J, et al. Chemical, electrochemical and mechanical requirements for electrolytes at electrode interfaces[A]. LANDGREBE, ALBERT R, KLINGER, et al. Interfaces, Phenomena and Nanostructures in Lithium Batteries[C]. Pennington, NJ, USA: The Electrochemical Society Proceedings Series, 2000.340-352.
  • 8[8]MAYES, ANNE M, SADOWAY, et al. Using block Co-polymers in nanostructured architectures in lithium batteries[A]. LANDGREBE, ALBERT R, KLINGER, et al. Interfaces, Phenomena and Nanostructures in Lithium Batteries[C]. Pennington, NJ, USA: The Electrochemical Society Proceedings Series, 2000.153-162.
  • 9[9]WATKINS, JOHN J, COPE, et al. Transport phenomena at nanoscale dimensions[A]. LANDGREBE, ALBERT R, KLINGER, et al. Interfaces, Phenomena and Nanostructures in Lithium Batteries[C]. Pennington, NJ, USA: The Electrochemical Society Proceedings Series, 2000.163-174.
  • 10[10]PELED, EMANUEL. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-The solid electrolyte interphase model[J]. J Electrochem Soc, 1987,126:2 047-2 051.

共引文献2

同被引文献139

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部