期刊文献+

桥梁断面几种气动导纳模型的合理性剖析 被引量:1

Rationality analysis of some existing aerodynamic admittance models for bridge deck sections
下载PDF
导出
摘要 首先介绍非定常运动状态下的薄机翼的升力产生机制,机翼的相对运动速度用一系列固定分布模态表达成一种级数形式的广义模式。在这些速度分布模式中包括有平动模式、转动模式以及其他高阶的非线性模式。与此相对应,机翼所受的非定常升力也可根据环量理论求解成一种广义模式。由于所有频率特性的脉动风均可采用Bessel函数展开成广义形式,因而这一类方法直接得出机翼气动导纳的表达式。目前,桥梁风致抖振计算中几种应用较广的气动导纳模型均与机翼理论有关,该文的主要目标是通过对机翼理论的回顾,剖析桥梁风工程中气动导纳模型的合理性与所存在问题的根源。分析表明,任何试图通过气动导数求出气动导纳的方法都是在逻辑上不正确的。通过气动导纳的本质特征的分析,对试验测试钝体桥梁断面气动导纳的方法提出一些建议。 This paper reviewed the thin airfoil non-stationary lift producing mechanism, where the non-uniform motion is expressed in a general form composed of a series of relative vertical velocity distribution modes. These modes, including rigid translation, rotation, and other nonlinear high-order modes, result in a general form of the non-stationary lift, according to the theory of circulation. The aerodynamic admittance formula of an airfoil can be derived directly from this general form because fluctuation wind of any frequency can be expressed in a general form by Bessel functions. Currently, most adopted aerodynamic admittance models in bridge engineering are related to airfoil theory. The main purposes of this paper are, through the review of the thin airfoil theory, to point out problems existing in these models. The analysis results indicate that, any attempt of determining the aerodynamic admittance via flutter derivatives is logically incorrect. By analyzing the substantive characteristics of aerodynamic admittances, some suggestions with respect to aerodynamic admittance experimental methods for bluff bridge sections, are presented.
出处 《土木工程学报》 EI CSCD 北大核心 2012年第8期104-113,共10页 China Civil Engineering Journal
基金 国家自然科学基金(90915002 51178182)
关键词 机翼 非定常 升力 气动导纳 钝体 桥梁 airfoil non-stationary lift aerodynamic admittance bluff bridge
  • 相关文献

参考文献32

  • 1Dowell E H. A modem course in aeroelasticity [ M]. 4th Edition. Boston : Kluwer Academic, 2004.
  • 2Scanlan R H, Tomko J J. Airfoil and bridge deck flutter derivatives [ J ]. Journal of the Engineering Mechanics Division, 1971,97 ( 6 ) : 1717-1737.
  • 3Karman T, Sears W R. Airfoil theory for non-uniform motion [ J ]. Journal of the Aeronautical Sciences, 1938,5 (10) :379-390.
  • 4Sears W R. Some aspects of non-stationary airfoil theory and its practical application [ J ]. Journal of the Aeronautical Science, 1941,8 (5) : 104-108.
  • 5Theodorsen T. General theory of aerodynamic instability and the mechanism of flutter [ R ]. Langley, VA : U. S. Advisory Committee for Aeronautics, 1934.
  • 6Scanlan R H. Motion-related body-force functions in two- dimensional low-speed flow [ J ]. Journal of Fluids and Structures, 2000,14 ( 1 ) :49-63.
  • 7Scanlan R H. Problematics in formulation of wind-force models for bridge decks [ J ]. Journal of Engineering Mechanics, 1993,119 (7) : 1353-1375.
  • 8Scanolan R H, Budlong K S, Beliveau J G. Indicia| aerodynamic functions for bridge decks [ J ]. Journal of Sanitary Engineering Division, 1974,100( 8 ) :657-671.
  • 9Scanlan R H, Jones N P. A form of aerodynamic admittance for use in bridge aeroelastic analysis [ J ]. Journal of Fluids and Structures, 1999,13 ( 7 ) : 1017-1027.
  • 10Scanlan R H. Bridge deck aeroelastic admittance revisited [J]. Journal of Bridge Engineering, 2000,5( 1 ) :1-7.

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部