期刊文献+

产异丁醇关键基因在大肠杆菌中表达的研究 被引量:2

Coexpression of two essential isobutanol synthesis genes in Escherichia coli
原文传递
导出
摘要 【目的】改造大肠杆菌缬氨酸合成途径,使其能够代谢合成异丁醇。【方法】将乳酸乳球菌(Lactococcus lactis)1.2829的2-酮异戊酸脱羧酶基因(kivD)和醇脱氢酶基因(adhA)串联克隆到大肠杆菌DH5α宿主中表达。【结果】经过改造的宿主菌发酵24 h后异丁醇产量为0.12 g/L。酶活测定实验发现,kivD和adhA基因在宿主菌中均得到表达,但由于KivD的低表达量导致宿主菌最终的异丁醇合成能力偏低。通过研究温度和pH对KivD和AdhA酶活的影响,最终选定二者的最适温度为30°C,最适pH为6.5。【结论】通过向宿主菌导入外源异丁醇合成基因能够改造其自身代谢途径,从而合成异丁醇。 [Objective] E. coli DH5u modified the valine biosynthesis pathway to biosynthesize isobutanol. [Methods] The 2-ketoisovalerate decarboxylase gene (kivD) and alcohol dehydrogenase gene (adhA) of Lactococcus lactis 1.2829 were tandemly cloned and expressed in E. coli DH5α. [Results] The yield of isobatanol by the engineered E. coli was only 0.12 g/L by 24 h fermentation. Further results revealed that the insufficient KivD activity is the bottleneck for the isobutanol biosynthesis. A series of experiments also showed that the optimal tempera- ture and pH for both KivD and AdhA are 30 ℃ and pH 6.5, respectively. [Conclusion] Isobatanol fermentation by cloning and expressing essential genes in host is feasible.
出处 《微生物学通报》 CAS CSCD 北大核心 2012年第7期912-920,共9页 Microbiology China
基金 国家973计划项目(No.2011CB707401) 国家863计划项目(No.2012AA021302) 天津市滨海新区自主创新重大项目(No.2011-BK120014)
关键词 2-酮异戊酸脱羧酶 醇脱氢酶 大肠杆菌DH5α 异丁醇 2-Ketoisovalerate decarboxylase, Alcohol dehydrogenase, E. coli DH5a, Isobutanol
  • 相关文献

参考文献17

  • 1Lin YL, Blaschek HP. Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth[J]. Applied and Environmental Microbiology, 1983, 45(3): 966-973.
  • 2Ingram LO, Aldrich HC, Borges ACC, et al. Enteric bacterial catalysts for fuel ethanol production[J]. Biotechnology Progress, 1999, 15(5): 855-866.
  • 3Gao Q, Zhang M, McMillan JD, et al. Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures[J]. Applied Biochemistry and Biotechnology, 2002, 98-100(1/9): 341-355.
  • 4Smith KM, Cho KM, Liao JC. Engineering Corynebacterium glutamicum for isobutanol production[J]. Applied Microbiology and Biotechnology, 2010, 87(3): 1045-1055.
  • 5Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89.
  • 6Borden JR, Papoutsakis ET. Dynamics of genomic- library enrichment and identification of solvent tolerance genes for Clostridium acetobutylieum[J]. Applied and Environmental Microbiology, 2007, 73(9): 3061-3068.
  • 7Atsumi S, Cann AF, Connor MR, et al. Metabolic engineering of Escherichia coli for 1-butanol production[J]. Metabolic Engineering, 2008, 10(6): 305-311.
  • 8Atsumi S, Liao JC. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli[J]. Applied and Environmental Microbiology, 2008, 74(24): 7802-7808.
  • 9Cann AF, Liao JC. Production of 2-methyl-I- butanol in engineered Escherichia coli[J]. Applied Microbiology and Biotechnology, 2008, 81 (1): 89-98.
  • 10Connor MR, Liao JC. Engineering of an Escherichia coli strain for the production of 3-methyl-l-butanol[J]. Applied and Environmental Microbiology, 2008, 74(18): 5769-5775.

二级参考文献8

共引文献6

同被引文献38

  • 1Ingram L O, Aldrich H C, Borges A C C, et al. Enteric bacterial catalysts for fuel ethanol production. Biotechnology Progress, 1999, 15(5) : 855-866.
  • 2Savage N. Fuel options: the ideal biofuel. Nature, 2011,474 (7352) :9-11.
  • 3Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008,451 (7174) :86-89.
  • 4Nicole N E, Shuchi S H, Anna A E, et al. Metabolic engineering for higher alcohol production. Metabolic Engineering, 2014,25 : 174-153.
  • 5Martadela P, Pilar F P, Carmen P. Biochemical and molecular characterization of a-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiology Letters, 2004,238 ( 2 ) : 367-374.
  • 6Sorensen H P, Mortensen K K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 2005,4( 1 ) : 1-8.
  • 7Williams R E, Bruce N C. ' New uses for an old enzyme' the old yellow enzyme family of flavoenzymes. Annals of Microbiology, 2002,148(6) : 1607-1614.
  • 8Shine J, Dalgarno L. The 3' -terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. National Academy of Sciences, 1974,71 (4) : 1342-1346.
  • 9Mary V M, Maurille J F, David A T. Depletion of Free 30S ribosomal subunits in Escherichia coli by expression of RNA containing shine-dalgamo-like sequences. Jouranl of Bacteriology, 2002.184(2) :494-502.
  • 10K6nig S. Subunit structure, function and organisation of pyruvate decarboxylases from various organisms. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1998, 1385(2) :271-286.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部