期刊文献+

一种基于Apriori的关联规则的改进算法的研究 被引量:3

An Improved Lgorithm for Mining Association Rules Based on Apriori Algorithm
下载PDF
导出
摘要 Apriori算法是关联规则的经典算法,并己经被越来越多的企业使用。它在给企业带来经济效益的同时,也让人们意识到算法自身的不足:第一,该算法在扫描事务数据库的次数过多,从而需要承担很大的I/O负载;第二,它可能产生庞大的候选集。为了提高Apriori算法的效率,针对减少扫描事务数据库次数的方法,提出一种改进挖掘效率的算法。 Apriori algorithm brings to the enterprise economic benefits,and also makes people aware of the algorithm deficiencies: firstly,when applying to scan the transaction database,the algorithm costs so much times that results in a lot of I/O spending;secondly, it can produce huge candidate set.In order to improve the efficiency of the Apriori algorithm, this pa- per puts forward to an improved Apriori algorithm with higher mining efficiency according to reduce I/O spending.
出处 《工业控制计算机》 2012年第6期82-82,85,共2页 Industrial Control Computer
关键词 APRIORI 关联规则 数据挖掘 apriori algorithm,association rule,data mining
  • 相关文献

参考文献5

二级参考文献15

  • 1Agrawal R, Mannila H, Srikant R, Toivonen H, and Verkamo V.I. Fast discovery of association rules[A]. In Fayyad UM, Piatetshy-Shapiro G, Smyth P, and Uthurusamy R, editors, Advances in Knowledge Discovery and Data Mining [M]. Chapter 12, 307-328. Menlo Park, California: AAAI/MIT Press,1996.
  • 2Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[C]. In Proceedings of the ACM SIGMOD Conference on Management of Data, pages 207-216. Washington DC: ACM Press NY, May 1993.
  • 3Fayyad UM, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery: and overview[A]. In Fayyad UM, Piatetsky-Shapiro G, Smyth P, and Uthurusamy R, editors, Advances in Knowledge Discovery and Data Mining[M]. Menlo Park, California : AAAI/MIT Press, 1996. 1 -34.
  • 4Sarawagi S, Thomas S, Agrawal R. Integrating association rule mining with relational database systems : alternatives and implications [C]. Proceedings of the ACM SIGMOD conference on Management of Data, 1998. 343-354.
  • 5R Agrawal, R Skikant. Fast algorithms for mining association rules in large databases[C]. Proceeding of the 20th International Conference on Very Large Data Bases, 1994.
  • 6R Agrawal ,T Imielinski,A Swami.Mining Association Rules between Sets of Items in Large Database[C].In:Proceedings of the ACM SIGMOD Conference on Management of Data,1993:207~216
  • 7Han J,Kamber M.DataMining:Concepts and Techniques[M].Beijing:Higher Education Press,2001
  • 8http://ftp.ics.uci.edu/pub/machine-learning-databases/mushroom/
  • 9http ://www.cse.cuhk.edu.hk/~kdd/data/IBM_VC++.zip
  • 10蔡伟杰,张晓辉,朱建秋,朱扬勇.关联规则挖掘综述[J].计算机工程,2001,27(5):31-33. 被引量:134

共引文献125

同被引文献18

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部