期刊文献+

储罐底板腐蚀状况的贝叶斯网络智能评价方法 被引量:1

Intelligent Evaluation Method for Tank Bottom Corrosion Based on Bayesian Networks
下载PDF
导出
摘要 以贝叶斯网络为基础,利用与储罐底板腐蚀相关的外部表征因素,结合领域专家经验,采用随机重启爬山算法等5种启发式算法,构建储罐底板腐蚀状况贝叶斯网络智能评价模型。对比样本预测结果可知:随机重启爬山算法构建的网络模型预测能力优于其他4种算法学习的网络结构,平均准确率为92%。预测结果表明,该预测模型可解决储罐底板腐蚀状况的预测问题,具有一定的工程应用价值。 Based on Bayesian networks and using related external factors of the tank bottom corrosion, as well as combined with experts' experience in the field, the Bayesian networks intelligent evaluation model for tank bottom corrosion was established with random repeated hill climbing algorithm and other four heuristic algo- rithms. Comparing prediction results with acoustic emission testing results shows that the average accuracy rati- o can reach 92% , and this prediction technique can resolve the problem in tank bottom corrosion prediction, as well as can be used in engineering applications.
出处 《化工机械》 CAS 2012年第3期335-337,390,共4页 Chemical Engineering & Machinery
基金 黑龙江省教育厅科学技术研究项目(12511008)
关键词 储罐 底板腐蚀 贝叶斯网络 外部表征因素 声发射在线检测 storage tank, tank bottom corrosion, Bayesian networks, external factors, online acoustic emis-sion testing
  • 相关文献

参考文献5

  • 1林士敏,田凤占,陆玉昌.贝叶斯网络的建造及其在数据采掘中的应用[J].清华大学学报(自然科学版),2001,41(1):49-52. 被引量:66
  • 2Cofino A S,Cano R, Sordo C, et al. Bayesian Networks for Probabilistic Weather Prediction [ C ]. Proceedings of the 15th European Conference on Artificial Intelli- gence. Lyon :IOS Press ,2002:695 - 700.
  • 3WittenIH,FrankE著,董琳译.数据挖掘实用机器学习技术[M].第2版.北京:机械工业出版社,2006:180-188.
  • 4Chickering D M, Heckerman D, Meek C. Large-sample Learning of Bayesian Networks is NP-hard[ J]. Journal of Machine Learning Research, 2004, ( 5 ) : 1287 1330.
  • 5JB/T10764-2007,无损检测常压金属储罐声发射检测及评价方法[S].北京:机械工业出版社,2007.

二级参考文献10

  • 1[1]Heckerman D. Bayesian networks for data mining [J]. Data Mining and Knowledge Discovery, 1997, 1: 79~119.
  • 2[2]Heckerman D, Geiger D, Chickering D. Learning Bayesian Networks: the combination of knowledge and statistical data [J]. Machine Learning, 1995, 20: 196~243.
  • 3[3]Geiger D, Heckerman D. A characterization of the Dirichlet distribution with applicable to learning Bayesian networks [A]. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence [C]. Montreal, QU, 1995. 196~207.
  • 4[4]Cooper G, Herskovits E. A Bayesian method for the induction of probabilistic networks from data [J]. Machine Learning, 1992, 9: 309~347.
  • 5[5]Dagum P, Luby M. Approximating probabilistic inference in Bayesian belief networks is NP-hard [J]. Artificial Intelligence, 1993, 60: 141~153.
  • 6[6]Chickering D. Learning equivalence classes of Bayesian-network structures [A]. In Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence [C]. Portland, OR: Morgan Kaufmann, 1996.
  • 7[7]Heckerman D, Mamdani A, Wellman M. Real-world applications of Bayesian networks [J]. Communications of the ACM, 1995, 38 (3): 24~26.
  • 8[8]Sewell W, Shah V. Social class, parental encouragement, and educational aspirations [J]. American Journal of Sociology, 1968, 73: 559~572.
  • 9[9]Spirtes P, Glymour C, Scheines R. Causation, Predication, and Search [M]. New York: Springer-Verlag, 1993.
  • 10[10]Cheeseman P, Stutz J. Bayesian classification (AutoClass): Theory and results [A]. Fayyad U, Piatesky-Shapiro G, Smyth P, et al (Eds.). Advances in Knowledge Discovery and Data Mining [C]. Menlo Park, CA: AAAI Press, 1995.

共引文献65

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部