期刊文献+

自适应分段时域质心特征在鱼类识别中的应用 被引量:3

Applications of adaptive segmentation temporal centroid features in fish identifications
下载PDF
导出
摘要 提出了一种基于时域质心的时域自适应分段方法。该方法以时域质心为依据对信号的时域进行划分,在划分的各个子段内计算时域质心,并将其作为下一层划分的分割点。各个子段内的时域质心反映了信号的能量分布特性,可作为识别特征量。对三种常见的不同形状的鱼类进行了水池试验,提取自适应分段时域质心特征,并使用BP神经网络分类器成功进行了分类。结果表明:利用自适应分段时域质心特征可对不同形状的鱼类进行识别,且具有较高的识别率。 A method of the adaptive segmentation based on the temporal centroid is proposed in this paper This method divides signals in the time-domain according to the temporal centroid, and then calculates the temporal centroid in the divided sub-segmentation, and makes the temporal centroid to be the split point of the next layer. The temporal centroid in each sub-segmentation indicates the energy distribution characteristics, which can act as the identification features. The pool experiments of three kinds of fish with different shapes have been conducted, sub-segment temporal centroid characteristics have been extracted, and the targets have been classified by applying the BP(Back Propagation) neural network classifier successfully. The results suggest that fish with different shapes can be recognized using their adaptive segment temporal centroid features and the recognition rate is high.
出处 《应用声学》 CSCD 北大核心 2012年第3期215-219,共5页 Journal of Applied Acoustics
关键词 时域质心 特征提取 鱼类识别 Temporal centroid, Features extraction, Fish identification
  • 相关文献

参考文献14

  • 1ROSE G A, LEGGETT W C. Hydroacoustic signal classification of fish schools by species[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45(4): 597-604.
  • 2ZAKHARIA M E, MAGAND F, HETROIT F, et al. Wideband sounder for fish species identification at sea[J]. ICES Journal of Marine Science, 1996, 53(6): 203-208.
  • 3SIMMONDS J E, ARMSTRONG F, COPLAND P J. Species identification using wideband backscatter with neural network and discriminant analysis[J]. ICES Journal of Marine Science, 1996, 53(2): 189-195.
  • 4HORNE J K. Acoustic approaches to remote species identification: a review[J]. Fisheries Oceanography, 2000, 9(4): 356-371.
  • 5REEDER D B, JECH J M, STANTON T K. Broadband acoustic baekscatter and high-resolution morphology of fish: measurement and modeling[J]. Journal of the Acoustical Society of America, 2004, 116(2): 747-761.
  • 6KUL1NCHENKO A B, SIMPSON P K, DENNY G F. Tethered Fish Data Collection and Species Classification: Prince William Sound Bottomfish[C]. International Geoscience and Remote Sensing Symposium, 2004, 2: 1439-1443.
  • 7BRUNDAGE H M III, JUNG J. Experiments with Broadband Sonar for the Detection and Identification of Endangered Shortnose Sturgeon[J]. Marine Technology Society Journal, 2009, 43(3): 78-82.
  • 8SUNARDI, DIN J, YUDHANA A.. Target Strength for Fish Identification Using Echo Sounder[J]. Applied Physics Research, 2009, 1(2): 92-101.
  • 9ROGERS E O, FLEISCHER G W, DENNY G F. Broadband Fish Identification of Laurentian Great Lakes Fishes[C]. International Geosicence and Remote Sensing Symposium, 2004, 2: 1430-1434.
  • 10HORNE J K, CLAY C S. Sonar systems and aquatic organisms: matching equipment and model parameters[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55(5): 1296-1306.

同被引文献16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部