期刊文献+

一类特殊的无限非正则p-群Ⅱ

A Special Class of Infinite Irregular p-GroupsⅡ
原文传递
导出
摘要 对于群本身是非正则的但其每一个无限子群均为正则的一类局部幂零p-群给出了结构的刻画,证明了:若局部幂零p群是正则的且其每一个子群是次正规的,则该群是幂零的. In this paper, we get the detailed structure of the locally nilpotent p-group G which is irregular, while each proper infinite subgroups is regular, moreover, we get that G is nilpotent if the locally nilpotent p-group G is regular and each proper subgroup of G is subnormal.
作者 薛海波 吕恒
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2012年第3期240-242,共3页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(11001226)资助项目 重庆市教育委员会科学技术研究项目计划(KJ091217)
关键词 正则P-群 局部幂零群 拟循环p-群 可除阿贝尔p-群 regular p groups locally nilpotent groups quascyclic groups divisible Abelian p groups
  • 相关文献

参考文献7

  • 1Hall P. A contribution to the theory of groups of prime power order[J]. Proc London Math Soc ,1933,36(2) : 29-95.
  • 2Huppert B. Finite Group[M]. Berlin: Springer-Verlag, 1967.
  • 3吕恒,张志让,陈贵云.无限正则p-群[J].数学年刊(A辑),2007,28(6):827-834. 被引量:2
  • 4吕恒,薛海波,陈贵云.一类特殊的无限非正则p-群[J].武汉大学学报(理学版),2008,54(1):25-27. 被引量:1
  • 5Robinson D J S. A Course in the Theory of Groups [M]. New York : Springer-Verlag, 1980.
  • 6Zaitsev D I, Onishchuk V A. On locally nilpotent groups with a cen-tralizer satisfying a niteness condi- tion[J]. Uhr Mat Zh ,1991,43(8) :1084-1087.
  • 7Casolo C. On the structure of groups with all sub- groups subnormal[J]. J Group Theory, 2002,5 : 294- 300.

二级参考文献17

  • 1徐明曜.有限群导引[M].北京:科学出版社,2001.
  • 2Hall P., A contribution to the theory of groups of prime power order [J], Proc. London Math. Soc., 1933, 36(2):29-95.
  • 3Huppert B., Finite Group [M], New York: Springer-Verlag, 1967, 393 -396.
  • 4Ol'sanskii A. Ju, Infinite groups with cyclic subgroups [J], Dokl. Akad. Nauk SSSR, 1979, 245(4):785-787.
  • 5Robinson D. J. S., Finiteness Condition and Generalied Soluble Groups Ⅱ[M], New York: Springer-Verlag, 1972:125-126.
  • 6L/i Heng, Duan Zeyong and Chen Guiyun, On hypercentral group G with │G : n(G)│ < ∞[J], Commun. in Algebra, 2006, 34(5):1803-1810.
  • 7Mann A., Regular p-groups [J], Israel J. Math., 1971, 10(4):471-477.
  • 8Mann A., Regular p-groups [J], Israel J. Math., 1973, 14(3):294-303.
  • 9Menegazzo F. and Stonehewer S., On the automorphism group of a nilpotent p-group [J], J. London Math. Soc., 1985, 31(2):272-276.
  • 10Robinson D. J. S., A Course in the Theory of Groups [M], New York: Springer-Verlag, 1980, 106-107.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部