期刊文献+

特殊双变量矩阵方程组异类约束解的MCG算法 被引量:8

MCG METHOD TO FIND DIFFERENT CONSTRAINED SOLUTION OF SPECIAL DOUBLE-VARIABLE MATRIX EQUATIONS
下载PDF
导出
摘要 本文研究了约束矩阵方程问题中异类约束解的迭代算法.利用修正共轭梯度法,求得了特殊双变量线性矩阵方程组的异类约束解,选取特殊的初始矩阵,得到唯一极小范数异类约束解.理论证明和数值算例验证了该方法的有限步收敛性,推广了修正共轭梯度法在求约束矩阵方程问题中的应用范围. This paper studies the method of finding different constrained solutions in the problem of constrained matrix equations.By modified conjugate gradient method and Choosing special initial matrix,different constrained solutions of special double-variable linear matrix equations is obtained,and the unique least-norm solution of the system is got.Theoretical proof and numerical examples show the finite-step convergence of the method,which extend the application of modified conjugate gradient method in solving constrained matrix equations.
出处 《数学杂志》 CSCD 北大核心 2012年第4期649-657,共9页 Journal of Mathematics
基金 国家自然科学基金(11071196)
关键词 线性矩阵方程组 异类约束解 修正共轭梯度法 最佳逼近 linear matrix equations different constrained solutions MCG method the optimal approximation
  • 相关文献

参考文献8

二级参考文献32

共引文献40

同被引文献57

  • 1盛兴平.矩阵方程AX=B的约束最小二乘解[J].阜阳师范学院学报(自然科学版),2005,22(1):21-23. 被引量:1
  • 2袁永新,戴华.矩阵方程A^TXB+B^TX^TA=D的极小范数最小二乘解[J].高等学校计算数学学报,2005,27(3):232-238. 被引量:16
  • 3林玲.一类矩阵方程的最小秩解及其最佳逼近[J].海南大学学报(自然科学版),2006,24(3):222-225. 被引量:3
  • 4张贤达.矩阵分析与应用[M].北京:清华大学出版社,2006.
  • 5Z Y Peng. An iteration method for the least squares symmtric solution of the linear matrix equation AXB=C., Appl.Math.Comput., 1 70(2005), 71 1-723.
  • 6X Y Peng ,X Y Hu and L Zhang. An iteration method for the symmetric solutions and the optimal approximate solution of the matrix equation AXB=C, Appl.Math.Comput., 160(2005), 763- 777.
  • 7Yuan Lei ,An-ping Liao. A minimal residual algorithm for the inconsistent matrix equation AXB=C over symmetric matrices., Appl.Math.Comput., 188(2007), 499-513.
  • 8Peng Z Y, Hu X Y. The reflexive and anti-reflexive solutions of the matrix equation AX=B. [J] Linear Algebra Appl,1992; 174:145-151.
  • 9Z Y Peng. An iteration method for the least squares symmtric solution of the linear matrix equation AXB=C., Appl.Math.Comput., 1 70(2005), 71 1-723.
  • 10X Y Peng ,X Y Hu and L Zhang. An iteration method for the symmetric solutions and the optimal approximate solution of the matrix equation AXB=C, Appl.Math.Comput., 160(2005), 763- 777.

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部