期刊文献+

基于相似类合并FCM在图像分割中的应用 被引量:2

Similar Class Merging Based FCM for Image Segmentation
下载PDF
导出
摘要 传统的基于模糊C均值聚类的图像分割算法分割结果中类内数据空间分布离散,无法准确分割出目标物体.针对这一问题,提出一种基于相似类合并模糊C均值聚类算法,并将其应用到图像分割中.首先,提出一种全局空间相似性度量标准和全局灰度相似性度量标准,并将其引入到一种新颖的节点间距离度量公式中来计算图像中任意一点与聚类中心点的差异.其次,算法选取彩色直方图作为区域描述算子,采用巴氏距离计算聚类过程中得到的任意两类间的相似性.最后,应用最大相似类合并策略得到最终的分割结果.实验结果表明,与传统模糊C均值聚类算法和空间约束核模糊C均值聚类算法相比,该算法获得更加精确的图像分割结果. A similar class merging based FCM algorithm for image segmentation was proposed tosolve the problems that the segmentation results of the traditional FCM based image segmentation algorithm are discrete in the spatial distribution and the object cannot be segmented accurately by the traditional FCM based method. Firstly, a global spatial similarity measure and a global intensity similarity measure were proposed and introduced into a novel distance metric to calculate the difference between the pixels and the cluster centers. Secondly, color histogram was used as a descriptor, and Bhattacharyya distance was used to calculate the similarity between any two classes. Finally, a maximal similarity based class merging strategy was used to obtain the final image segmentation results. The experimental results indicated that the proposed algorithm can obtain more accurate image segmentation results compared with FCM and KFCM methods.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期930-933,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(8100063960674021) 中国博士后科学研究基金资助项目(20100470791)
关键词 模糊C均值聚类 图像分割 彩色直方图 巴氏距离 核模糊C均值聚类 FCM image segmentation color histogram Bhattacharyya distance KFCM
  • 相关文献

参考文献9

  • 1Karasulu B, Korukoglu S. A simulated annealing-basedoptimal threshold determining method in edge-based segmentation of gray.ale images [ J ]. Applied .Soft Computing, 2011,11 (2) : 2246 - 2259.
  • 2lsa N A M. Salamah S A. Ngah U K. Adaptive fuzzy moving K-means clustering algorithm for image segmentation [J]. IEEE Transactionzs on Comsumer Electromics . 2009.55 (4) : 2145- 2153.
  • 3Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactioms on .Syvstems, Man, and Cybernetics, Part B : (Cyberneticx , 2004,34(4 ) : 1907 1916.
  • 4Ji Z X, Sun Q S, Xia D S. A framework with modified fast FCM for brain MR images segmentation [ J ]. Pattern Recognition, 2011,44 ( 5 ) : 999 - 1013.
  • 5Bezdek J. Cluster validity with fuzzy sets[J ]. Cybernetics and Systems, 1974,3(3) :58 73.
  • 6Krishnapuram R, Keller J M. A possibilistic approach to clustering[J ]. IEEE Transactions on Fuzzy Systems, 1993,1 (2) :98-110.
  • 7Girolami M. Mercer kernel-based clustering in feature space [ J ]. IEEE Wra tzsactions on Neural Networks, 2002,13 ( 3 ) : 780 - 784.
  • 8Ning J F, Zhang L, Zhang D, el al. Interactive image segmentation by maximal similarity based region merging[J ]. Pattern Recngnit inn, 2010,43 ( 2 ) : 445 - 456.
  • 9Comanieiu D, P, amesh V, Meer I'. Kernel-based object tracking[J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 5 ) : 564 - 577.

同被引文献28

  • 1刘小芳,曾黄麟,吕炳朝.部分监督加权模糊C-均值算法的聚类分析[J].计算机仿真,2005,22(3):114-116. 被引量:9
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1232
  • 3ZADEH L A. Fuzzy sets[J]. Information and control, 1965, 8(3): 338-353.
  • 4RUSPINI E H. A new approach to clustering[J]. Information and control, 1969, 15(l): 22-32.
  • 5DUNN J C. A Fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Cybernetics, 1973, 3(3) : 32-57.
  • 6BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M~. New York: Plenum Press,1981.
  • 7YAGER R R, FILEV D P. Approximate clustering via the mountain methodEJT]. Systems, Man and Cybernetics, IEEE Transactions on, 1994, 24(8)= 1279-1284.
  • 8GHAFFARIAN S, GHAFFARIAN S. Automatic histogram-based fuzzy C-means clustering for remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97: 46-57.
  • 9BEZDEK J C. A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms[J]. IEEE transactions on pattern analysis and machine intelligence, 1980, 2(1): 1 8.
  • 10FALASCONI M, GUTIERREZ A, PARD() M, et al. A stability based validity method for fuzzy clustering[J]. Pattern Recognition, 2010, 43(4) : 1292-1305.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部