期刊文献+

基于模糊C均值聚类改进的最大似然分类法 被引量:4

Improvement for Maximum Likelihood Classification Based on Fuzzy C-means
下载PDF
导出
摘要 基于参数密度分布模型的最大似然分类法(MLC)是遥感影像经典分类方法之一,它具有清晰的参数解释能力、易于与先验知识融合和算法简单而易于实施等优点,但是由于遥感数据具有高度的模糊性和随机性,使得贝叶斯(Bayes)判别函数中的均值向量和协方差矩阵很难准确确定。因此首先利用模糊C均值聚类得到模糊划分矩阵,然后基于模糊划分矩阵计算出每一个聚类类别模糊均值和模糊协方差矩阵,并利用模糊均值和模糊协方差矩阵来代替贝叶斯判别函数中的均值向量和协方差矩阵从而建立一个新的判别函数,最后与传统的最大似然分类结果进行比较,结果表明改进后的最大似然分类法在总体精度、Kappa系数均优于传统的最大似然分类方法。 Based on parametric density distribution model, maximum likelihood classification (MLC) might be one of the classic methods for remote sensing image classification. It has several distinct advantages, such as clear parametric interpretability, feasible integration with prior knowledge based on Bayesian theory, and relative simple realization, etc. However, due to some fuzziness and randomness for remote sensing data, it is difficult to determine the Bayesian dis- criminant function of the mean vector and covariance matrix. So, firstly fuzzy partition matrix are calculated by Fuzzy C-means clustering, then based on the fuzzy partition matrix calculated fuzzy mean and fuzzy covariance matrix for each cluster type, and establishing a new discriminant function by using fuzzy mean and fuzzy covariance matrix instead of the Bayesian discriminant function of the mean vector and covariance matrix. Finally comparison with the results of tradition- al maximum likelihood classification, showing the improvement of maximum likelihood classification method is better than the traditional maximum likelihood classification method in the overall accuracy,
出处 《科学技术与工程》 北大核心 2012年第19期4697-4700,共4页 Science Technology and Engineering
基金 昆明理工大学重点学科建设项目(14078024)资助
关键词 最大似然分类 模糊C均值聚类 协方差矩阵 模糊划分矩阵 maximum likelihood classification fuzzy C-means covariance Kappa matrix coefficients. fuzzy partition matrix
  • 相关文献

参考文献5

二级参考文献14

  • 1廖克,成夕芳,吴健生,陈文惠.高分辨率卫星遥感影像在土地利用变化动态监测中的应用[J].测绘科学,2006,31(6):11-15. 被引量:90
  • 2冈萨雷斯,等.基于MATLAB的数字图像处理[M].北京:电子工业出版社,2004.
  • 3MCLACHLAN G J, BASFORD K E. Mixture Models: Inference and Applications to Clustering [M]. New York: Marcel Dekker, 1988.
  • 4RICHARDS J A, JIA X. Remote Sensing Digital Image Analysis: An Introduction[M]. Berlin:Springer, 1999.
  • 5STEIN A, MEER F, GORTE B. Spatial Statistics for Remote Sensing [M]. New York:Kluwer Academic Publishers, 1999.
  • 6DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum Likelihood Estimation from Incomplete Data via EM Algorithm [J]. J R Statist Soc, 1977, (B39):1-38.
  • 7REDNER R A, WALKER H F. Mixture Densities, Maximum Likelihood and the EM Algorithm [J]. SIAM Review, 1984, 26(2):195-239.
  • 8BRUZZONE L, PRIETO D F, SERPICO S B. A Neural-statistical Approach to Multi-temporal and Multi-source Remote-sensing Image Classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1 350-1 359.
  • 9SCLOVE S C. Application of the Conditional Population Mixture Model to Image Segmentation [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1983, (PAMI-5): 428-433.
  • 10TADJUDIN S, LANDGREBE D A. Robust Parameter Estimation for Mixture Model [J]. IEEE Transactions on Geo-science and Remote Sensing, 2000, 38(1): 439-445.

共引文献88

同被引文献56

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部