期刊文献+

Synthesis of PCL/MWCNT by One-Pot with Microwave-Assistant and Its Mechanical Properties

Synthesis of PCL/MWCNT by One-Pot with Microwave-Assistant and Its Mechanical Properties
原文传递
导出
摘要 Polycaprolactone/multi-walled carbon nanotubes nano composite (PCL/MWCNT) was synthesized by a one-pot process with microwave-assistance. The fractured structures, crystalline behaviors and thermal properties of the nanocomposites were investigated with an electronic microscope, an X-ray diffraction device, an infrared spectroscopy, and a differential scanning calorimeter, respectively. A universal testing machine was used to study the mechanical properties of the composites. The results showed that when the content of MWCNT was 0.3 % (m/m), the tensile strength and elongation at break reached the maximum values, and increased from 7.5 MPa and 125 % of neat PCL to 14.8 MPa and 387 %, respectively. With an increase of the MWCNT content, the Young’s modulus continuously increased from 121.5 MPa of PCL to 285.6 MPa. When the MWCNT content was 0.5 % (m/m), the Young’s modulus was ca. 1.4 fold over that of neat PCL, indicating that the addition of MWCNT resulted in simultaneous enhancement of strength, toughness and modulus remarkably. Polycaprolactone/multi-walled carbon nanotubes nano composite (PCL/MWCNT) was synthesized by a one-pot process with microwave-assistance. The fractured structures, crystalline behaviors and thermal properties of the nanocomposites were investigated with an electronic microscope, an X-ray diffraction device, an infrared spectroscopy, and a differential scanning calorimeter, respectively. A universal testing machine was used to study the mechanical properties of the composites. The results showed that when the content of MWCNT was 0.3 % (m/m), the tensile strength and elongation at break reached the maximum values, and increased from 7.5 MPa and 125 % of neat PCL to 14.8 MPa and 387 %, respectively. With an increase of the MWCNT content, the Young’s modulus continuously increased from 121.5 MPa of PCL to 285.6 MPa. When the MWCNT content was 0.5 % (m/m), the Young’s modulus was ca. 1.4 fold over that of neat PCL, indicating that the addition of MWCNT resulted in simultaneous enhancement of strength, toughness and modulus remarkably.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2012年第4期344-350,共7页 武汉大学学报(自然科学英文版)
基金 Supported by International Corporation Project of Shanghai Municipality Commission(10410710000) the Fundamental Research Funds for the Central Universities (Self-Determined and Innovative Research Funds of WUT)
关键词 multi-walled carbon nanotube POLYCAPROLACTONE nanocomposite mechanical properties multi-walled carbon nanotube; polycaprolactone; nanocomposite; mechanical properties
  • 相关文献

参考文献1

二级参考文献4

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部