期刊文献+

基于离散量子微粒群优化的作业车间调度

Discrete quantum-behaved particle swarm optimization for job-shop scheduling
下载PDF
导出
摘要 针对强非确定性多项式难的作业车间调度(JSP)问题,提出一种离散量子微粒群优化算法(DQPSO).该算法基于量子态波函数描述微粒群粒子位置,结合遗传算法中的交叉、变异操作,采用随机键编码方法对连续空间内的解进行离散化,使得DQPSO能够直接用于求解车间生产调度这类组合优化问题.另外,针对JSP的复杂性,通过引入2层结构的局部搜索策略,构造在局部优化解附近不同搜索半径的微粒,增强算法的搜索能力,进一步提高解的多样性和寻优质量.应用结果表明,对大部分作业车间调度测试算例,DQPSO表现出更有效的寻优性能. A novel discrete quantum-behaved particle swarm optimization (DQPSO) approach was proposed to address Job-shop scheduling (JSP) problem. JSP is a complex combinatorial optimization problem with many variations, and it is strong nondeterministic polynomial time (NP)-complete. The proposed DQPSO approach utilized the principle of quantum-PSO and described the particle positions with quantum wave function. Crossover and mutation operators in GA were involved which makes DQPSO applicable for searching in combinatorial space directly. In addition, a new two-layer local searching algorithm was also incorporated into the DQPSO algorithm. The two layer local searching algorithm randomly generated new particles around the local optimums, which in turn updated solutions with high quality and diversity. The application demonstrated that DQPSO can achieve better results on most benchmark scheduling problems.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第5期842-847,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60974100,60904039) 中央高校基本科研业务费专项资金资助项目
关键词 作业车间调度 离散量子微粒群优化 局部搜索 job-shop scheduling discrete quantum-behaved particle swarm optimization local searching
  • 相关文献

参考文献1

二级参考文献11

  • 1Kennedy J and Eberhart R 1995 IEEE International Conference on Neural Networks (Perth, Western Australia 27 November-1 December) 4 1942.
  • 2Holland J 1975 Adaptation in Natural and Artificial Systems (Michigan: The University of Michigan Press) p 86.
  • 3Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M and Zeilinger A 2005 Nature 434 169.
  • 4Yang S Y, Liu F, and Jiao L C 2001 Acta Electron. Sin. 29 1873
  • 5Zhang W F, Shi Z K, and Luo Z Y 2008 International Joint Conference on Neural Networks (Hongkong 1-6 June 2008).
  • 6p 1510 Tayarayi M H N and Akbarzadeh M R T 2007 IEEE Congress on Evolutionary Computation (Singapore 25-28 September 2007) p 2670.
  • 7Xiao J, Yan Y P, Lin Y, Yuan L and Zhang J 2008 IEEE Congress on Evolutionary Computation (Hongkong 1-6 June 2008) p 1513.
  • 8Wei M, Li Y X, Jiang D Z, He Y F, Huang X Y and Xu X 2008 IEEE Congress on Evolutionary Computation (Hongkong 1-6 June 2008) p 1722.
  • 9Al-Rabadi A N 2009 Int. J. Intelligent Computing and Cybernetics 2 52.
  • 10Xing Z H, Duan H B and Xu C F 2009 Lecture Notes in Computer Science 5551 735.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部