期刊文献+

具有区间时变时滞的中立型系统稳定性分析 被引量:1

Stability analysis for neutral systems with interval time-varying delays
下载PDF
导出
摘要 针对一类具有区间时变时滞的线性中立型系统,基于Lyapunov-Krasovskii泛函与改进的自由权矩阵方法,提出时滞区间依赖型稳定性条件.当时滞的变化率已知时,得到同时依赖于时滞区间和时滞变化率的稳定性条件;当时滞的变化率未知时,得到依赖于时滞区间、独立于时滞变化率的稳定性条件.所给条件进一步推广到具有范数有界不确定性的中立型系统,提出鲁棒稳定性条件.所有结果均以线性矩阵不等式的形式给出,利用线性矩阵不等式(LMI)工具求解非常方便.数值实例验证了结果的有效性. Based on the Lyapunov-Krasovskii functional method and the free weighting matrix method, a delay-range-dependent stability condition is proposed for a class of linear neutral systems with interval time varying delays. When the derivative of the delay is known, a range-dependent and rate-dependent stability condition is obtained; when the derivative of the delay is unknown, a range-dependent and rate-independent stability condition is obtained. The proposed stability condition is further extended to the neutral systems with norm-bounded uncertainties and a robust delay-range dependent stability condition is established. As all the conditions are derived in terms of LMIs, it is very eonvenient to solve them by using the LMI toolbox. Finally, numerical examples are given to show the effectiveness of the proposed conditions.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第5期848-852,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61074045)
关键词 中立型系统 区间时变时滞 鲁棒稳定性 LYAPUNOV-KRASOVSKII泛函 线性矩阵不等式(LMI) Key words: neutral systems interval time-varying delay robust stability Lyapunov-Krasovskii functionalmethod linear matrix inequality (LMI)
  • 相关文献

参考文献18

  • 1RICHARD J P. Time-delay systems: An overview of some recent advances and open problems [J]. Automati- ca, 2003, 39(10): 1667-1694.
  • 2FRIDMAN E. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems [J]. Systems & Control Letters, 2001, 43(4) : 309 - 319.
  • 3YUE D, WON S, KWON O. Delay dependent stability of neutral systems with time delay: an LMI approach [J]. IEE Proc-Control Theory and Applications, 2003, 23 -27.
  • 4HE Y, WU M, SHE J H, et al. Delay-dependent ro- bust stability criteria for uncertain neutral systems with mixed delays [J]. Systems & Control Letters, 2004, 51 (1): 57-65.
  • 5LI X G, ZHU X J. Stability analysis of neutral systems with mixed delays [J]. Automatica, 2008, 44(11): 2968 2972.
  • 6QIAN W, LIU J, SUN Y, et al. A less conservative ro- bust stability criteria for uncertain neutral systems with mixed delays [J]. Mathematics and Computers in Simula- tion, 2010, 80(5): 1007-1017.
  • 7ENGELBORGHS K, LUZYANINA T, SAMAEY G. Report TW330, DDE-BIFTOOL: A matlab package for bifurcation analysis for delay differential equations [R]. Belgium, Leuven: K U Leuven, 2001.
  • 8MAO W J, CHU J. D-stability for linear continuous- time systems with multiple time delays[J]. Automati- ca, 2006, 42(9) 1589-1592.
  • 9HE Y, WANG Q G, LIN C, et al. Delay-range- de- pendent stability for systems with time-varying delay[J]. Automatica, 2007, 43(2): 371-376.
  • 10JIANG X F, HAN Q L. New stability criteria for line- ar systems with interval time-varying delay [J]. Auto- matica, 2008, 44(10) : 2680 - 2685.

同被引文献12

  • 1HAN Q.A discrete delay decomposition approach to stability of linear retarded and neutral systems[J] .Automatica,2009,45:517-524.
  • 2HAN Q.Robust stability of uncertain delay-differential systems of neutral type[J] .Automatica,2002,38:719-723.
  • 3PARK P.A delay-dependent stability criterion for systems with uncertain time-invariant delay[J] .IEEE Transactions on Automatic Control,1999,44:876-877.
  • 4HAN Q,YU L.Robust stability of linear neutral systems with nonlinear parameter pertubations[J] .IEE proceedings on Control Theory and Applications,2004,151:539-546.
  • 5CHEN W,ZHENG W.Delay-dependent robust stabilization for uncertain neutral systems with distributed delay[J] .Automatica,2007,43:95-104.
  • 6LI X,ZHU X.Stability analysis of neutral systems with distributed delays[J] .Automatica,2008,44(8):2197-2201.
  • 7SHAO H.New delay-dependent stability criteria for systems with interval delay[J] .Automatica,2009,45:744-749.
  • 8SUN J,LIU G,CHEN J,et al.Improved delay-range dependent stability criteria for linear systems with time-varying delays[J] .Automatica,2010,46:466-470.
  • 9YU K,LIN C.Stability criteria for uncertain neutral systems with interval time-varying delays[J] .Chaos,Solitons & Fractals,2008,38:650-657.
  • 10GU K.An integral inequality in the stability problem of time-delay systems[C] Proceedings of the 39th IEEE Conference on Decision and Control,IEEE press,2000:2805-2810.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部