期刊文献+

基于强化学习的多机器人避碰算法研究 被引量:2

Algorithm of multi-robot collision avoidance based on reinforcement learning
下载PDF
导出
摘要 采用强化学习解决多机器人避碰问题。然后针对表格式Q学习算法只能用于离散的状态并且学习时间过长,难以收敛的不足,提出了神经网络和Q学习相结合的算法。最后将该算法应用到多机器人避碰问题中,仿真实验表明该算法有效,能较好地解决多机器人避碰问题。 This paper adopts reinforcement learning to solve multi-robot collision avoidance problems. Then in allusion to the insufficiency that tabular Q-learning algorithm can only be used for discrete states and learning time is too long, difficult to convergence, it puts forward combination of neural networks and Q-learning algorithms. Finally the algorithm is applied to multi-robot collision avoidance problems. The simulation experiments show that the algorithm is effective and well solve the multi-robot collision avoidance problems.
作者 段勇 陈腾峰
出处 《信息技术》 2012年第6期100-103,共4页 Information Technology
关键词 多机器人避碰 强化学习 神经网络 multi-robot collision avoidance reinforcement learning neural networks
  • 相关文献

参考文献2

二级参考文献15

  • 1MORENO D L. Using prior knowledge to improve reinforcement learning in mobile robotics[A]. Towards Autonomous Robotic Systems [C]. Colchester, UK, 2004.
  • 2DIXON K, MALAK R, KNOSLA P. Incorporating prior knowledge and previously learned information into reinforcement learning agents [R].Carnegie Mellon University, Institute for Complex Engineered Systems, 2000.
  • 3WATKINS C J, DAYAN P. Q-learning [J]. Machine Learning, 1992, 8(3-4): 279-292.
  • 4TAN Ming. Multi-agent reinforcement learning: Independent vs. cooperative agents [A]. Proceedings of the Tenth International Conference on Machine Learning [C]. Amherst, MA, USA, 1993.
  • 5LITTMAN M L. Friend-or-foe Q-learning in general-sum games [A]. Proceedings of the Eighteenth International Conference on Machine Learning [C]. Williamstown, MA, USA, 2001.
  • 6KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: a survey [J]. Journal of Artificial Intelligence Research, 1996, 4(2): 237-285.
  • 7Leslie Pack Kaelbling. Associative Reinforcement Learning: Functions in k-DNF[J] 1994,Machine Learning(3):279~298
  • 8Leslie Pack Kaelbling. Associative Reinforcement Learning: A Generate and Test Algorithm[J] 1994,Machine Learning(3):299~319
  • 9Leslie Pack Kaelbling. Associative reinforcement learning: Functions ink-DNF[J] 1994,Machine Learning(3):279~298
  • 10Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning[J] 1992,Machine Learning(3-4):229~256

共引文献33

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部