期刊文献+

正负关联规则挖掘在电子商务中的应用研究

Application Research of Positive and Negative Association Rules Mining in the E-Commerce
下载PDF
导出
摘要 如何根据用户当前的访问行为,预测他下一个感兴趣的商品,做出针对性的推荐成为电子商务的一个重要研究内容。文章提出了一种不需产生大量非频繁项集的关联规则挖掘算法,该算法利用相关性很好的改善了经典Apriori算法中存在大量冗余规则问题。最后通过实验证明了算法的有效性。 It is an important e-commerce research field to predict a user's next commodity of interest and then,to recommend a specific based on his current visit behavior.In this paper,an association rule mining algorithm that does not need to produce a large number of infrequent item sets is proposed.By using the correlation of a rule,a good solution can be made to the problem of the existence of a large number of redundant rules in the classic Apriori algorithm.Finally,the effectiveness of the algorithm is proved by experiments.
作者 纪怀猛
出处 《计算机与数字工程》 2012年第6期148-150,共3页 Computer & Digital Engineering
关键词 负关联规则 电子商务 相关性 negative association rules e-commerce commodity recommend correlation
  • 相关文献

参考文献11

二级参考文献39

  • 1董祥军,王淑静,宋瀚涛.基于两级支持度的正、负关联规则挖掘[J].计算机工程,2005,31(10):16-18. 被引量:19
  • 2罗可,郗东妹.采掘有效的关联规则[J].小型微型计算机系统,2005,26(8):1374-1379. 被引量:12
  • 3赵亮,萧德云,刘震涛.一种用于挖掘正负关联规则的可量化标准[J].计算机工程,2007,33(2):56-58. 被引量:10
  • 4Savasere A.Mining for Strong Negative Associations in Large Database of Customer Transaction[C]//Proc.of the 1998 Int'l Conf.on Data Engineering.New York,USA:[s.n.],1998.
  • 5Brin S.Beyond Market:Genraliazing Association Rules to Correlations[C]//Proc.of the ACM SIGMOD Conf..[S.l.]:ACM Press,1997.
  • 6[1]李贵勇.可靠性工学[M].北京:电子工业出版社出版社
  • 7[2]罗定康.可靠性及其应用[M].西安:西北工业大学出版社
  • 8AGRAWAL R,IMIELINAKI T,SWAMI A.Mining association rules between sets of items in large databases[C] //Proc of the ACM SIGMOD Conference on Management of Data.Washington,D C,USA:ACM,1993:207-216.
  • 9KLEMETTINEN M,MANNILA H,RONKAINEN P P,et al.Finding interesting rules from large sets of discovered association rules[C] //Proc of the Third Int'l Conference on Information and Knowledge Management.New York:ACM,1994:401-407.
  • 10SRIKANT R,AGRAWAL R.Mining quantitative association rules in large relational table[C] //Proc of the ACM SIGMOD Conf on Management of Data.Montreal,Canada:ACM,1996:1-12.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部