期刊文献+

可分面元三维观测系统设计研究 被引量:12

Design of bin-divisible 3-D seismic layout.
下载PDF
导出
摘要 在常规三维观测系统中 ,接收线间距是震源间距的倍数 ,震源线间距是接收器间距的倍数 ,这使得在震源线和接收线的每个交点处震源和接收器是重合的。这种布置理论上使得所有 CMP点都在每个面元的中心。可分面元观测系统排列的几何结构简单 ,便于野外施工。震源线的间距为道间距的非整数倍 ,接收线间距也不是炮点距的整数倍。接收线间距与震源线间距之比的余数决定了接收线方向和震源方向所期望的次反射面元。CMP点均匀分布在一个共反射面元内 ,面元具有可分性 ,地震处理人员可根据不同的地质任务选择面元大小 ,增加了资料处理和解释的可选性。由于在共反射面元内增加了来自不同共中心点的地震资料信息 。 In ordinary field 3-D layout, receiving-line spacing is n-times the seismic source gap, and source-line spacing is n-times the receiver interval; as a result, at each intersecting point of source line and receiving line, source position superposes receiver position. Theoretically, such layout makes each CMP lie at the center of corresponding reflection bin. Bin-divisible field layout is simple in its geometry structure, and favours field operation. The source-line spacing is the non-integral times of group interval, and the receiving-line spacing is not the integral times of source gap. The remainder after the ratio of receiving-line spacing to source-line spacing determines the expected sub-bins in directions of receiving line or source line. Common-mid points lie uniformly in a common reflection bin, which is divisible. Seismic data processors may choose proper bin size according to different geology tasks, increasing the options in seismic data processing and interpretation. Common reflection bin contains more seismic informations coming from different common-mid points, therefore both the variation and local anomaly of subsurface geological structure may be highlighted very obviously.
作者 赵生斌
出处 《石油地球物理勘探》 EI CSCD 北大核心 2000年第3期333-338,共6页 Oil Geophysical Prospecting
关键词 三维观测系统设计 覆盖次数 可分面元 地震勘探 D layout, design, fold number, divisible binZhao Shengbin, Geophysical Corporation, Tuha Oil Field, Hami City, Xinjiang, 839009, China
  • 相关文献

参考文献13

二级参考文献70

  • 1刘竞,王择青,祝卓宏,朱鸿武,傅小玲,尚蕾,张红梅,刘金花.SARS治疗一线医护人员心理健康状况调查[J].解放军医学杂志,2005,30(4):353-355. 被引量:18
  • 2吴晓红,马智群,田芸,刘容,付功莉,唐敏.重型颅脑损伤患者压疮危险因素评估及护理干预[J].护理学杂志(外科版),2006,21(11):59-60. 被引量:17
  • 3Midelfart A. Ultraviolet radiation and cataract[J]. Acta Ophthal- mol Stand ,2005,83 ( 6 ) :642 - 644.
  • 4Godlee F. Dangers of ozone depletion[J]. BMJ, 1991,303 (8613) :1326 - 1328.
  • 5Farman JC, Gardiner BG, Shanklin JD. Large losses of total ozone in Antarctica reveal seasonal CIOx/NOx interaction [ J ]. Nature,1985,315 (6016):207- 210.
  • 6Reinsel GC, Miller A J, Weatherhead EC, et al. Trend analysis of total ozone data for turnaround and dynamical contributions [ J ]. J Geophys Res ,2005,110,D16306, doi : 10.1029/2004JD004662.
  • 7Sherwood FR. Stratospheric ozone depletion [J]. Philos Trans R Soc Lond B Biol Sci,2006,361 (1469) :769 -790.
  • 8McKenzie RL, Aucamp PJ, Bais AF, et al. Ozone depletion and climate change: impacts on UV radiation [ J ], Photochemistry and Photobiological Sciences ,2011,10 : 182 - 198.
  • 9Gao Z, Gao W, Chang NB. Detection of multidecadal changes in UVB and total ozone concentrations over the continental US with NASA TOMS data and USDA ground-based measurements[ J]. Remote Sensing,2010,2 ( 1 ) : 262 - 277.
  • 10McKenzie RL, Bodeker GE, Keep J, et al. UV radiation in New Zealand:north to south differences between two sites and the re- lationship to other latitudes [ J ]. Weather Climate, 16 : 17 - 26.

共引文献109

同被引文献76

引证文献12

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部