期刊文献+

有限链上的格蕴涵代数在不确定性库存模型中的应用

Application of Lattice Implication Algebra on Finite Chain in Inventory Model Uncertainty
原文传递
导出
摘要 格蕴涵代数是一种处理不确定性信息的应用较为广泛的逻辑代数。本文从实际问题出发,选取常用的语言值,建立了有限链上具体的格蕴涵代数,通过格蕴涵代数上二元运算的定义,给出了语言值间的一些常用运算及相应的运算规则,使得不确定性信息可以直接进行运算;进一步将所构建的格蕴涵代数应用于带有不确定性信息的库存管理问题中,建立了相应的库存控制模型,并通过上述语言值间运算规则和数值计算方法求出了使总库存成本最小的经济订货批量。 Lattice implication algebra is a logic algebra that has been widely used for dealing with uncertainty information. This paper, starting from the practical problems, selects the common linguistic values and establishes a concrete lattice implication algebra on the finite chain, then, gives some arithmetic operations and the corresponding rules through the definitions of binary operations on the lattice implication algebra, so that, uncertainty information can be made directly computing. Further, the established lattice implication algebra can be applied in inventory management with uncertainty information and the corresponding inventory model can be also established. In order to solve the optimal problem, the economic order quantities were obtained by using the operation rules above.
作者 王宇辉 杨丽
出处 《模糊系统与数学》 CSCD 北大核心 2012年第3期35-41,共7页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(71101049 60875034)
关键词 不确定性信息 语言值 格蕴涵代数 库存管理 Uncertainty Information Linguistic Values Lattice Implication Algebra Inventory Management
  • 相关文献

参考文献12

  • 1徐扬.格蕴涵代数[J].西南交通大学学报,1993,28(1):20-27. 被引量:318
  • 2Xu Y, Ruan D, Qin K Y, Liu J. Lattice-valued logic-An alternative approach to treat fuzziness and incomparability [M]. New York ,Berlin ,Heidelberg :Springer-Verlag, 2003.
  • 3Huang S H, Lin P C. A modified ant colony optimization algorithm for multi-item inventory routing problems with demand uncertainty[J]. Transportation Research Part E, 2010,46 : 598-611.
  • 4Gupta A, Maranas C D. Managing demand uncertainty in supply chain planning[J]. Computers and Chemical Engineering, 2003,27 : 1219-1227.
  • 5谭满益,唐小我.模糊需求下的产品供给能力初步研究[J].管理学报,2006,3(1):76-80. 被引量:6
  • 6高峻峻,胡乐江.模糊环境下分销系统的库存决策问题研究[J].系统工程学报,2007,22(4):407-411. 被引量:4
  • 7Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, (8):338-353.
  • 8Zadeh L A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic [J]. Fuzzy Sets and Systems, 1997,19 : 111 - 127.
  • 9刘晓东,张庆灵.模糊概念的EI代数分解[J].模糊系统与数学,2002,16(2):27-35. 被引量:3
  • 10Liu B. Uncertainty theory: An introduction to its axiomatic foundations[M]. Berlin:Springer,2004.

二级参考文献28

  • 1王国俊.广义拓扑分子格[J].中国科学:A辑,1983,(12):1063-1072.
  • 2[1]Zadeh L A.Fuzzy sets[J].Information and Control,1965,8:338~353.
  • 3[3]Wang G J.Theory of topological molecular lattices[J].Fuzzy Sets and Systems,1992,47:351~376.
  • 4[4]Graver J E, Watkins M E.Combinatorics with emphasis on the theory of graphs[M].New York: Springer- Verlag,Inc.,1977.
  • 5[5]Kim K H.Boolean matrix theory and applications[M].New York and Basel:Marcel Dekker,Inc.,1982.
  • 6[6]Liu X D.The fuzzy sets and system Based on AFS structure, EI algebra and EII algebra[J].Fuzzy Sets and Systems,1998,95:179~188.
  • 7[7]Liu X D.A new fuzzy model of pattern recognition and hitch diagnosis of complex systems[J].Fuzzy Sets and Systems,1999,104:289~296.
  • 8[8]Liu X D.The fuzzy theory based on AFS algebras and AFS structure[J].Journal of Mathematical Analysis and Applications,1998,217:459~478.
  • 9[9]Liu X D.The topology on AFS algebra and AFS structure[J].Journal of Mathematical Analysis and Applications,1998,217:479~489.
  • 10[10]Liu X D.A new mathematical axiomatic system of fuzzy sets and systems[J].Int.Journal of Fuzzy Mathematics,1995,3:559~560.

共引文献327

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部