期刊文献+

一类具有饱和发生率及免疫的时滞SEIR传染病模型的全局渐近稳定性 被引量:6

Globally Asymptotical Stability of a Delayed SEIR Epidemic Model with Saturation Incidence Rate and Vaccination
原文传递
导出
摘要 研究了一类具有饱和发生率及免疫的SEIR,传染病模型、构造适当的Lyapunov泛函并运用时滞微分方程的LaSalle型定理,证明了当基本再生数小于1时,无病平衡点是全局渐进稳定的,当基本再生数大于1时,地方病平衡点存在并且是全局渐近稳定的. This paper deals with the global analysis of a delayed SEIR epidemic model with saturation incidence rate and vaccination strategy. By constructing suitable Lyapunov functionals and using LaSalle-type theorems for delayed differential equations, we will prove that when the basic reproduction ratio is less than unity, then the disease-free equilibrium is globally asymptotically stable and when the basic reproduction ratio is great than unity, a unique endemic equilibrium exists and is globally asymptotically stable.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第13期180-184,共5页 Mathematics in Practice and Theory
基金 新疆医科大学博士科研启动基金 新疆医科大学教学改革研究项目(YG 2011002)
关键词 SEIR传染病模型 全局渐近稳定 LYAPUNOV泛函 饱和发生率 免疫 SEIR epidemic model globally asymptotical stability Lyapunov functionalssaturation incidence rate: vaccination
  • 相关文献

参考文献7

  • 1Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford University, Oxford, 1991.
  • 2Ferguson N N, Cummings D A T, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke D S. Strategies for containing an emerging influenza pandemic in Southeast Asia[J]. Nature, 2005(437): 209-214.
  • 3Ferguson N M, Donnelly C A, Anderson R M. The foot-and-mouth epidemic in great Britain: pattern of spread and impact of interventions[J]. Science, 2001, 292 (5519): 1155.
  • 4Hou J, Teng Z. Continuous and impulsive vaccination of SEIR epidemic models with saturation incidence rates[J]. Mathematics and Computers in Simulation, 2009(79): 3038-3054.
  • 5Zhao Z, Chen L, Song X. Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate[J]. Mathematics and Computers in Simulation, 2008(79): 500-510.
  • 6Gao S, Chen L, Teng Z. Pulse vaccination of an SEIR epidemic model with time delay[J]. Nonlinear Analysis: RealWorld Applications, 2008(9): 599-607.
  • 7Sun C, Hsieh Y H. Global analysis of an SEIR model with varying population size and vaccination[J]. Applied Mathematical Modelling, 2010(34): 2685-2697.

同被引文献30

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部