摘要
根据已知离散晶格方程的Lax对,构建了该方程的Ⅳ波Darboux变换和无穷守恒律,通过应用Darboux变换,得到离散晶格方程的范德蒙行列式形式的精确解,通过画图给出了该方程一类特殊的单孤子结构.
Based on Lax representation of a discrete lattice equation, the N-fold Darboux transformation and infinitely many conservation laws are constructed. The N-iterated explicit solutions in terms of Vandermonde-type determinant are also derived via the resulting DT. A special one-soliton structure is shown graphically.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第13期246-252,共7页
Mathematics in Practice and Theory
基金
北京市教育委员会科技发展计划面上项目基金资助项目
编号KM201010772020
关键词
离散晶格方程
DARBOUX变换
LAX对
精确解
守恒律
A discrete lattice equation
Darboux transformation
Lax pair
explicit solution
conservation laws