期刊文献+

初始时刻不同的微分系统的稳定性准则 被引量:2

Stability Criteria of Differential Equations with Initial Time Difference
原文传递
导出
摘要 由于向量Lyapunov函数方法在确定初值问题微分系统的稳定性方面比纯量Lyapunov函数更有效,因此,本文利用向量Lyapunov函数方法研究了初始时刻不同的微分系统的稳定性与实用稳定性准则,并给出了一个简单的例子来说明向量Lyapunov函数的有效性. In this paper, stability and practical stability criteria of differential equations with initial time difference are investigated by using vector Lyapunove functions. The method of vector Lyapunove is more effective than a single Lyapunov function in terms of determining stability of differential equations with initial time difference, and we also give a simple example to illustrate the advantage of vector Lyapunov functions.
出处 《应用数学学报》 CSCD 北大核心 2012年第4期608-616,共9页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10971045) 河北省自然科学基金(2010000191)资助项目
关键词 稳定性 实用稳定性 向量Lyapunov函数 初始时刻不同 stability practical stability vector Lyapunove functions initial time difference
  • 相关文献

参考文献16

  • 1白洁.时标动力学方程的稳定性[J].应用数学学报,2010,33(5):855-866. 被引量:2
  • 2陈远强,许弘雷.脉冲控制系统的渐近稳定性分析[J].应用数学学报,2010,33(3):479-489. 被引量:5
  • 3王培光,樊永艳.脉冲混合系统关于两度量的最终稳定性[J].河北大学学报(自然科学版),2009,29(1):5-7. 被引量:2
  • 4王培光,王宁,鲍俊艳.变时滞反馈神经网络的全局指数稳定性[J].河北大学学报(自然科学版),2006,26(2):123-126. 被引量:2
  • 5Lakshmikantham V, Vatsala A S. Differential Inequalities with Initial Time Difference and Applica- tions. J. Inequalities and Applications, 1999, 3(3): 233-244.
  • 6Shaw M D, Yakar C. Generalised Variation of Parameters with Initial Time Difference and a Comparison Result in Terms of Lyapunov Like functions. International J. Non-linear Differential Equations- theory-methods and Applications, 1999, 5:86-108.
  • 7Yakar C, Deo S G. Variation of Parameters Formulae with Initial Time Difference for Linear Integrodifferential Equations. Applicable Analysis: an International Journal, 2006, 85(4): 333-343.
  • 8Lakshmikantham V, Leela S, Vasundharadevi J. Another Approach to the Theory of Differential Inequalities Relative to Changes in the Initial Times. J. Inequalities and Applications, 1999, 4(2): 163-174.
  • 9McRae F A. Perturbing Lyapunov Functions and Stability Creteria for Initial Time Difference. Applied Mathematics and Computation, 2001, 117(2-3): 313-320.
  • 10Jankowski T. Delay Intigro-differential Inequalities with Initial Time Difference and Applications. J. Mathematical Analysis and Applications, 2004, 291(2): 605-624.

二级参考文献24

  • 1许弘雷,刘新芝.陈氏混沌系统的脉冲鲁棒镇定[J].华中科技大学学报(自然科学版),2004,32(10):105-107. 被引量:9
  • 2张瑜,孙继涛.EVENTUAL STABILITY OF IMPULSIVE DIFFERENTIAL SYSTEMS[J].Acta Mathematica Scientia,2007,27(2):373-380. 被引量:2
  • 3Xie W,Wen C,Li Z.Impulsive Control for the Stabilization and Synchronization of Lorenz Systems.Physics Letters A,2000,275:67-72.
  • 4Liu X,Teo K L.Impulsive Control of Chaotic System.International Journal of Bifurcation and Chaos,2002,12:1181-1190.
  • 5Yang T,Yang L,Yang C.Impulsive Control of Lorenz System.Physica D,1997,110:18-24.
  • 6Lakshmikantham V,Bainoov D D,Simeonov P S.Theory of Impulsive Differential Equations.In:Series in Modern Applied Mathematics.Singapore:World Scientific,1989.
  • 7Yang T.Impulsive Control.IEEE Transactions on Automatic Control,1999,44:1081-1083.
  • 8Christiansen F B, Fenchel T M. Theories of Populations in Biological Communities. Berlin, Heidelbeg, New York: Springer-Verlag, 1977, 20-21.
  • 9Aotzsche C P, Siegmund S, Wirth F. A Spectral Characterization of Exponential Stability for Linear Time-invariant Systems on Time Scales. Discrete Contin. Dynam. Systs, 2003, 9:1223-1241.
  • 10Gard T, Hoacker J. Asymptotic Behavior of Natural Growth on Time Scales. Dynamical Systems Applied, 2003, 12:131-147.

共引文献7

同被引文献13

  • 1刘永清,李远清.一类滞后型时变广义系统解的稳定性[J].控制与决策,1997,12(3):193-197. 被引量:3
  • 2陆国平,周磊,何永昌,等.非线性广义系统的鲁棒控制与状态估计[M].北京:科学出版社,2011.
  • 3Wang P G, Zhang J. Stability of solutions for nonlinear singular systems with delay[J]. Appl Math Lett, 2012, 25: 1291-1295.
  • 4Lakshmikantham V, Vatsala A S. Differential inequalities with initial time difference and applica- tions[J]. J Inequal Appl, 1999, 3: 233-244.
  • 5LI A, FENG E, LI S. Stability and boundedness criteria for nonlinear differential systems relative to initial time difference and applications[J]. Nonl Anal(RWA), 2009, 10: 1073-1080.
  • 6Lakshmikantham V, Leela S, Devi J V. Another approach to the theory of differential inequalities relative to changes in the initial times[J]. J Inequal Appl, 1999, 4: 163-174.
  • 7Jandowski T. Differehtial inequalities with initial time difference[J]. Appl Anal, 2002, 81: 627-635.
  • 8Lakshmikantham V, Leela S. Differential and Integral Inequalities[M]. Academic Press, New York, 1969.
  • 9陈国旺,侯长顺.一类四阶非线性波动方程的初值问题[J].应用数学和力学,2009,30(3):369-378. 被引量:7
  • 10胡俭勇,苏锦海.一种随机性实时检测方案[J].计算机工程,2009,35(9):136-138. 被引量:11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部