期刊文献+

网络上SIR型传播的随机建模与极限定理 被引量:2

Limit Theorems for Stochastic SIR Epidemics in Networks
原文传递
导出
摘要 复杂网络本身及其上的传播过程是最近以来的研究热门,但是多数的工作都只有宏观模型,没有微观基础.本文中,我们将边与边之间的连接与个体的状态变化看作为基本的泊松流,从微观角度构造了网络上SIR型传播的随机模型.对任意有限的固定时间区间,在热力学极限下,从随机系统可以得到一个确定性动力系统—所谓的"水动力极限".这样,本文为这一领域的唯象的动力学模型建立了一个合理的微观基础.同时,我们得到了收敛速度的估计. Treating the instantaneous connecting of edges and the changing of individual states as fundamental Poisson flow, we construct the stochastic model from microscopic level for the SIR epidemic on networks. In thermodynamic limit, for any finite time t, we get the approximate deterministic dynamical system--the so called "hydrodynamic limit". Thus, we build a reasonable microscopic foundation for the phenomenologically built dynamical models in this field.
出处 《应用数学学报》 CSCD 北大核心 2012年第4期663-676,共14页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11001004) 北京市组织部优秀人才(2011D005003000009)资助项目
关键词 密度依赖群体过程 收敛速度 一致收敛 L_1收敛 density dependent population process rate of convergence uniformly converge converge in L1
  • 相关文献

参考文献20

  • 1Liljeros F, Edling C R, Amaral L A N, Stanley H E, Abers Y. The Web of Human Sexual Contacts. Nature, 2001, 411:907.
  • 2Schneeberger A, et al. Scale-free Networks and Sexually Transmitted Diseases: a Description of Observed Patterns of Sexual Contacts in Britain and Zimbabwe. Sex. Transm. Dis., 2004, 31:380.
  • 3Barab-si A L, Albert R, Jeong H. Scale-free Characteristics of Random Networks: the Topology of the World Wide Web. Physica A, 2000, 281:69-77.
  • 4Pastor-Satorras R, V-zquez A, Vespignani A. Dynamical and Correlation Properties of the Internet. Phys. Rev. Lett., 2001, 87:258701-1-258701-4.
  • 5Colizza V, Baxrat A, Barthelemy M, Vespignani A. The Role of the Airline Transportation Network in the Prediction and Predictability of Global Epidemics. PNAS, 2000, 103:2015-2020.
  • 6Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford Univ. Press, 1991.
  • 7Lajmanovich A, Yorke J A. A Deterministic Model for Gonorrhea in a Nonhomogeneous Population. Mathematical Biosciences, 1976, 28:221-236.
  • 8Hethcote H W, Yorke J A. Gonorrhea Transmission Dynamics and Control. Lecture Notes in Biomathematics 56. Berlin: Springer-Verlag, 1984.
  • 9Hethcote H W. The Mathematics of Infectious Diseases. SIAM Review, 2000, 42:599-653.
  • 10Boccalett S, et al. Complex Networks: Structure and Dynamics. Phys. Rep., 2006, 424:175-308.

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部