摘要
本文讨论了一类具有无穷时滞中立型非稠定脉冲随机泛函微分方程,利用Sadovskii不动点原理等工具得到了其积分解的存在性,给出其在一类二阶无穷时滞中立型非稠定脉冲随机偏微分方程积分解的存在性中的应用.
In this paper, we prove the existence of integral solutions for a class of non- densely defined impulsive neutral stochastic functional differential equations with infinite delay. The results are derived by means of the Sadovskii fixed point theorem. As an appli- cation, the existence result of integral solutions for a class of non-densely defined impulsive neutral second-order stochastic partial differential equations with infinite delay is estab- lished.
出处
《应用数学学报》
CSCD
北大核心
2012年第4期703-718,共16页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(10901003)
安徽省杰出青年基金(1108085J08)
教育部科学技术研究重点项目(211077)
安徽省自然科学基金(10040606Q30)资助项目
关键词
泛函随机微分方程
中立型方程
脉冲方程
积分解
非稠定算子
stochastic functional differential equation
neutral equation
impulsive equation
integral solution
non-densely defined operator