期刊文献+

Stiefel流形上的梯度下降法 被引量:3

Gradient Descent on the Stiefel Manifold
原文传递
导出
摘要 基于Stiefel流形上算法的几何框架,本文提出了Stiefel流形上的梯度下降法.理论上给出了算法收敛性定理.三个数值仿真算例表明算法是有效的,与其他方法相比具有更快的收敛速度. This paper presents gradient descent on the Stiefel manifolds based'on algorith- mic geometrical framework on the Stiefel manifolds. Theoretically, convergence theorem of this algorithm is given. Three numerical simulations are shown to verify the efficiency of the proposed algorithm, and to have faster convergence rate compared with other methods.
出处 《应用数学学报》 CSCD 北大核心 2012年第4期719-727,共9页 Acta Mathematicae Applicatae Sinica
基金 东北农业大学科学技术资助项目(2011RCA01)
关键词 约束非线性优化问题 梯度下降法 Stiefel流形 constrained nonlinear optimization problem gradient descent Stiefel manifold
  • 相关文献

参考文献11

  • 1Champagne B. Adaptive Eigendecomposition of Data Covaxiance Matrices Based on First- order Perturbations. IEEE Transaction on Signal Processing, 1994, 42(10): 2758-2770.
  • 2Favaxo P, Soatto S. A Geometric Approach to Shape from Defocus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 406-417.
  • 3Weinberger K Q, Saul L K. Distance Metric Learning for Large Margin Nearest Neighbor Classification. Journal of Machine Learning Research, 2009, 10:207-244.
  • 4Li D H, Gao F R, Xue Y L, et al. Optimization of Decentralized PI]PID Controllers Based on Genetic Algorithm. Asian Journal of Control, 2007, 9(3): 306-316.
  • 5段玲,黄建国.主成分分析的一个黎曼几何随机算法[J].上海交通大学学报,2004,38(1):71-74. 被引量:2
  • 6Yoo J, Choi S. Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds. 9th International Conference on Intelligent Data Engineering and Automated Learning, Daejeon, South Korea, 2008, 140-147.
  • 7Uschmajew A. Well-posedness of Convex Maximization Problems on Stiefel Manifolds and Orthogned Tensor Product Approximations. Numerische Mathematik, 2010, 115(2): 309-331.
  • 8Edelman A, Arias T, Smith S T. The Geometry of Algorithms with Orthogonality Constraints. SIAM Journal on Matrix Analysis and Applications, 1998, 20:303-353.
  • 9Fan J Y, Nie P Y. Quadratic Programs over the Stiefel Manifold. Operations Research Letters, 2006, 34:135-141.
  • 10Dodig M, Stosic M, Xavier J. On the Minimizing a Quadratic Function on Stiefel Manifolds. Technical Report, Instituto de Sistemas e Robotica, 2009. Available at http://users.isr.ist.uthpt /?jx avier/ ctech.pdf.

二级参考文献1

共引文献2

同被引文献20

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部